基于车联网大数据驱动的车路协同电动汽车绿色生态驾驶及出行研究
结题报告
批准号:
61773040
项目类别:
面上项目
资助金额:
62.0 万元
负责人:
吴新开
依托单位:
学科分类:
F0302.控制系统与应用
结题年份:
2021
批准年份:
2017
项目状态:
已结题
项目参与者:
丁川、张钊、李明、王朋成、王光军、刘智睿、马亚龙、何涛、黄磊
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
电动汽车具有低排放、低噪声、高能效等特点,已俨然成为新能源汽车的中坚力量。随着车路互联的发展,车联网背景下的电车大规模应用已成为一种必然,而随之带来的对电量的巨大需求将成为亟待解决的难题。目前这方面的研究是相对零碎的,特别缺乏研究在车联网背景下,综合考虑车路协同及无线充电技术,来实现对电车能耗优化的绿色生态驾驶及出行。为弥补这不足,本研究将从深度挖掘车联网大数据出发,首先探究电车的能量耗散机理,建立以数据驱动的高精度能耗预测模型;进而分析信号配时与驾驶速度的耦合关系,通过部署点-线-面的车路协同控制策略,并采用强化学习来同步实现电车的绿色生态驾驶;最后考虑无线充电布设与出行路径选择的相互制约,构建诱导绿色出行的双层多目标优化模型,运用在线学习机制实现绿色出行实时诱导并最终建立满足车路协同一体化的电车生态管理系统。本研究对推动电车市场并引导绿色生态出行,具有重要的理论研究意义和实际应用价值。
英文摘要
Electric vehicle (EV) has become a mainstream force in the development of new energy transportation thanks to its overwhelming advantages of energy efficiency, low greenhouse gas and noise emission. Under the context of connected vehicles (V2X), the massive deployment of EVs is becoming inevitable with the promotion of the cooperative vehicle-infrastructure development. Nevertheless, the huge demand of electricity with the wide spreading deployment of EVs will pose great challenges to the nation’s electric power system. At present, systematic study combining vehicle infrastructure cooperation, wireless charging and energy consumption optimization is absent. In order to fill the gap, this project is going to study and eventually establish an eco-friendly driving and traveling system for EVs based on the deep learning of the comprehensive data of connected vehicle network. The study could be decomposed into three stages. At the first stage, data-driven based accurate energy consumption model of electric vehicles will be built by investigating the mechanism of energy consumption and regeneration. With the help of the established energy consumption estimation model, at the second stage, the coupling relationship of vehicle speed and signal timing will be further analyzed, and then a dynamic EV eco-friendly driving control system can be developed by incorporating the vehicle-infrastructure cooperation controlling strategies at intersection-arterial-network levels and applying the deep learning method. At the third stage, a dual-level multiple objective optimization model for EVs’ eco travelling will be developed by considering the optimal deployment of wireless charging facilities and EV drivers’ route choices. Furthermore, by applying on-line learning mechanism, a real-time eco-travelling guiding system can be built; and eventually, an ecological electric vehicles management and control system can be established by integrating the work from all three stages. This project will be of vital academic importance and application value in promoting the electric vehicle market and eco-friendly driving and travelling.
电动汽车具有低排放、低噪声、高能效等特点,已俨然成为新能源汽车的中坚力量。随着车路互联的发展,车联网背景下的电车大规模应用已成为一种必然,而随之带来的对电量的巨大需求将成为亟待解决的难题。目前这方面的研究是相对零碎的,特别缺乏研究在车联网背景下,综合考虑车路协同及无线充电技术,来实现对电车能耗优化的绿色生态驾驶及出行。为弥补这不足,本研究从深度挖掘车联网大数据出发,首先探究了电车的能量耗散机理,建立了以数据驱动的高精度能耗预测模型;进而分析信号配时与驾驶速度的耦合关系,通过部署点-线-面的车路协同控制策略,并采用强化学习来同步实现电车的绿色生态驾驶;最后在考虑无线充电布设与出行路径选择的相互制约的条件下,构建了诱导绿色出行的双层多目标优化模型,运用在线学习机制实现绿色出行实时诱导并最终建立了满足车路协同一体化的电车生态管理系统。项目相应地提出了基于数据驱动的电车能耗预测模型,建立了基于在线学习的最优驾驶控制模型,构建了以生态驾驶控制为基础,集动态路径规划、无线充电道路布局优化和路面信号配时优化三位一体的多层多目标动态出行路径规划模型。项目成果可广泛应用于未来车路协同系统、电动汽车生态驾驶应用和无线充电设施规划等方面,对推动电车市场并引导绿色生态出行,具有重要的理论研究意义和实际应用价值。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Eco-driving advisory strategies for a platoon of mixed gasoline and electric vehicles in a connected vehicle system
联网车辆系统中混合汽油和电动汽车排的生态驾驶咨询策略
DOI:10.1016/j.trd.2018.07.014
发表时间:2018-08
期刊:Transportation Research Part D: Transport and Environment
影响因子:--
作者:Xiaozheng He;Xinkai Wu
通讯作者:Xinkai Wu
Modeling Arterial Traffic Dynamics With Actuated Signal Control Using a Simplified Shockwave Model
使用简化的冲击波模型通过驱动信号控制对干线交通动力学进行建模
DOI:10.1109/tits.2019.2943246
发表时间:2019
期刊:IEEE Transactions on Intelligent Transportation Systems
影响因子:8.5
作者:Xinkai Wu;Guangjun Wang;Daocheng Fu;Terence K. Tong;Zhao Zhang;Weihua Li
通讯作者:Weihua Li
DOI:10.1016/j.jtrangeo.2019.01.012
发表时间:2019-02-01
期刊:JOURNAL OF TRANSPORT GEOGRAPHY
影响因子:6.1
作者:Ding, Chuan;Cao, Xinyu
通讯作者:Cao, Xinyu
Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing
电动和柴油公交车能耗影响因素研究——基于北京大型公交网络的数据驱动分析
DOI:10.1016/j.energy.2020.119196
发表时间:2021
期刊:Energy
影响因子:9
作者:Ma Xiaolei;Miao Ran;Wu Xinkai;Liu Xianglong
通讯作者:Liu Xianglong
DOI:10.1109/mits.2019.2919638
发表时间:2019
期刊:IEEE Intelligent Transportation Systems Magazine
影响因子:3.6
作者:Yingrong Lu;Xiaotong Xu;Guangquan Lu;Chuan Ding
通讯作者:Chuan Ding
智能网联汽车信息安全防护与多目标控制方法
  • 批准号:
    --
  • 项目类别:
    面上项目
  • 资助金额:
    58万元
  • 批准年份:
    2021
  • 负责人:
    吴新开
  • 依托单位:
国内基金
海外基金