课题基金基金详情
GPM多卫星降水联合反演的误差溯源与水文传递规律
结题报告
批准号:
51979073
项目类别:
面上项目
资助金额:
60.0 万元
负责人:
雍斌
依托单位:
学科分类:
工程水文与水资源利用
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
雍斌
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
全球降水观测计划GPM是基于卫星族群的新一代高精度全球遥感降水对地观测计划,GPM对洪涝、干旱、滑坡、飓风等水文气象灾害的大尺度监测具有重要的应用价值。然而,GPM的星载多传感器联合反演特点导致水文用户不清楚多卫星降水误差的根本来源和产生机理,限制了GPM在水文领域应用的深入和广度。本项目拟借助GPM卫星族群上的星载雷达、被动微波和红外等传感器的轨道扫描,对新一代多卫星降水联合反演系统进行剖析解译,并结合地面观测实现不同传感器误差的独立溯源,揭示GPM联合反演误差的传感器来源和产生机理;采用神经网络非线性聚类算法,实现传感器反演误差的独立订正;通过GPM与分布式水文模型的集成模拟,解析微波和红外两类传感器反演误差的水文传递特性与规律,探明传感器误差对径流模拟的影响。研究成果可以拓展GPM在大尺度缺资料地区的水文应用,并为我国第一颗水循环观测卫星WCOM的遥感降水反演提供原型算法和技术参考。
英文摘要
The Global Precipitation Measurement Mission (GPM) is a constellation-based satellite mission specifically designed to provide a new generation of high-precisely observations of global rainfall at a fine resolution from space. As an international science mission with integrated application goals, the GPM will play an important role in monitoring the extreme hydrometeorological events, such as the floods, droughts, landslides, and hurricanes, etc. However, it is unclear for many hydrological users with regard to the fundamental source and mechanism of precipitation errors due to the unified retrievals of multi-sensors from a satellite constellation in the GPM systems. This unexpectedly limited the various research and operational applications of GPM in hydrological community. Our project aims to tracing the error sources of satellite precipitation retrievals from different GPM sensors including the dual-frequency Precipitation Radar (DPR) on the GPM core observatory, the Passive Microwave (PMW) imagers and radiometers aboard low-Earth-orbiting satellites, and the Infrared measurements from geostationary satellites. By analyzing the orbit scanning of these sensors, we will first identify the error sources for the two GPM-based multi-satellite precipitation retrieval systems (IMERG and GPM-GSMaP), and then reveal the generation mechanisms for these sensors’ errors. Next, a novel approach, the neural network self-organizing nonlinear algorithm, will be employed to completely correct the error structures and pattern features of precipitation retrievals for each sensor. Subsequently, we will further investigate the nonlinear characteristics of error propagation of different GPM sensors into hydrologic response by using the GPM precipitation estimates to drive the distributed hydrological model. The impacts of sensor errors on the simulated runoff will be quantitatively diagnosed. This study could not only extend the hydrological applications of GPM in those ungauged areas on large scales, but also provide prototype algorithms and technical references for the first water cycle observation satellite (WCOM) of China.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1109/tgrs.2021.3131238
发表时间:2021
期刊:IEEE Transactions on Geoscience and Remote Sensing
影响因子:8.2
作者:Hanqing Chen;B. Yong;J. Gourley;D. Wen;Weiqing Qi;Kun Yang
通讯作者:Hanqing Chen;B. Yong;J. Gourley;D. Wen;Weiqing Qi;Kun Yang
DOI:10.1175/jhm-d-20-0103.1
发表时间:2020-11-01
期刊:JOURNAL OF HYDROMETEOROLOGY
影响因子:3.8
作者:Chen, Hanqing;Yong, Bin;Hong, Yang
通讯作者:Hong, Yang
DOI:10.1016/j.jhydrol.2019.124376
发表时间:2020-02-01
期刊:JOURNAL OF HYDROLOGY
影响因子:6.4
作者:Chen, Hanqing;Yong, Bin;Zhang, Jianyun
通讯作者:Zhang, Jianyun
DOI:10.3390/rs12010141
发表时间:2020
期刊:Remote. Sens.
影响因子:--
作者:Dekai Lu;B. Yong
通讯作者:Dekai Lu;B. Yong
DOI:10.11834/jrs.20220240
发表时间:2022
期刊:遥感学报
影响因子:--
作者:丁明泽;雍斌;杨泽康
通讯作者:杨泽康
黄河源区高分辨率雨量场构建与多尺度气象水文预报
  • 批准号:
    U2243229
  • 项目类别:
    联合基金项目
  • 资助金额:
    245.00万元
  • 批准年份:
    2022
  • 负责人:
    雍斌
  • 依托单位:
基于新一代多卫星遥感联合反演的西南河流源区地形雨监测及径流模拟
  • 批准号:
    91547101
  • 项目类别:
    重大研究计划
  • 资助金额:
    80.0万元
  • 批准年份:
    2015
  • 负责人:
    雍斌
  • 依托单位:
新一代多卫星遥感反演降水的流域水文模拟和预报能力研究
  • 批准号:
    51379056
  • 项目类别:
    面上项目
  • 资助金额:
    80.0万元
  • 批准年份:
    2013
  • 负责人:
    雍斌
  • 依托单位:
一种新的区域大气-水文耦合模式RIEMS-TOPX构建及其应用
  • 批准号:
    40901017
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    20.0万元
  • 批准年份:
    2009
  • 负责人:
    雍斌
  • 依托单位:
国内基金
海外基金