智能增广的空地一体密集匹配点云建筑物精细重建方法

批准号:
42001407
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
谢林甫
依托单位:
学科分类:
测量与地图学
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
谢林甫
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
城市精细三维模型是智慧城市的关键基础信息,针对空地一体密集匹配点云数据精度不一、密度变化剧烈、同名地物特征相异导致的建筑物几何基元的高保真提取、拓扑关系的推理与恢复困难,本项目提出一种智能增广的空地一体密集匹配点云建筑物精细重建方法,主要研究内容包括:1)密度感知的建筑物平面基元提取,从密度变化的点云中提取完整平面基元;2)建筑物平面基元边界的多层次规则化,还原基元高保真边界及其正则关系;3)智能增广的基元拓扑恢复与模型重建,生成几何与拓扑最优的三维模型;4)原型系统与典型应用实验。本项目旨在显著提高空地一体摄影测量重建建筑物结构化模型的精细程度与自动化水平,为大规模城市精细三维建筑模型的高效生产和智慧城市建设提供有力支撑。
英文摘要
Accurate 3D city models are critical information for smart cities, which play an important role in city management, safety guarantee, and public services. Automatic building reconstruction by aerial and terrestrial photogrammetry is one of the major methods for 3D city modelling. However, the integrated aerial and terrestrial point clouds various largely in precision and point density, as well as the coverage areas for the same objects. Therefore, in this project, an accurate building reconstruction method from integrated aerial and terrestrial dense matching point clouds by intelligent augmentation is proposed. Major research contents include: 1) density-aware building primitive extraction, which extract intact building primitives from point clouds with large density variation; 2) hierarchical building boundary regularization, which recover building boundaries with high fidelity and multiple regularity; 3) intelligent augmented topology recover and model generation, which reconstruct structured models with optimal geometry accuracy and without topology conflict; 4) prototype system development and experiments. The project aims at improving the detailed richness, geometry accuracy, automation level of 3D building reconstruction for aerial-terrestrial integrated photogrammetry, and supporting the efficient reconstruction of large scale 3D building models in city areas.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1109/tits.2021.3108995
发表时间:2022
期刊:IEEE Transactions on Intelligent Transportation Systems
影响因子:--
作者:Weixi Wang;Xiaoming Li;Linfu Xie;Haibin Lv;Zhihan Lv
通讯作者:Zhihan Lv
DOI:10.3390/rs14091969
发表时间:2022-04
期刊:Remote. Sens.
影响因子:--
作者:Linfu Xie;Han Hu;Qing Zhu;Xiaoming Li;Xiang Ye;R. Guo;Yeting Zhang;Xiaoqiong Qin;Weixi Wang-Weixi
通讯作者:Linfu Xie;Han Hu;Qing Zhu;Xiaoming Li;Xiang Ye;R. Guo;Yeting Zhang;Xiaoqiong Qin;Weixi Wang-Weixi
DOI:10.16251/j.cnki.1009-2307.2023.03.002
发表时间:2023
期刊:测绘科学
影响因子:--
作者:黄俊杰;郭仁忠;张舵;王伟玺;李晓明;谢林甫
通讯作者:谢林甫
DOI:10.1109/jstars.2021.3115481
发表时间:2021
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
影响因子:5.5
作者:Lv Zhiyong;Fengjun Wang;L. Xie;Weiwei Sun;N. Falco;J. Benediktsson;Z. You
通讯作者:Lv Zhiyong;Fengjun Wang;L. Xie;Weiwei Sun;N. Falco;J. Benediktsson;Z. You
DOI:10.16251/j.cnki.1009-2307.2023.08.012
发表时间:2023
期刊:测绘科学
影响因子:--
作者:钱建国;张宇;王伟玺;谢林甫;李晓明;汤圣君
通讯作者:汤圣君
空地多平台影像与LiDAR点云集成的建筑物三维重建
- 批准号:--
- 项目类别:省市级项目
- 资助金额:15.0万元
- 批准年份:2024
- 负责人:谢林甫
- 依托单位:
国内基金
海外基金
