课题基金基金详情
基于磁性纳米粒子诱导浓度梯度的仿生离子泵能量转换体系
结题报告
批准号:
21671194
项目类别:
面上项目
资助金额:
65.0 万元
负责人:
田野
学科分类:
B0506.智能与仿生材料化学
结题年份:
2020
批准年份:
2016
项目状态:
已结题
项目参与者:
郑爽、张振、肖凯、刘芸
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
能源是当今世界发展重大问题,寻求新的能量转换形式是目前亟待解决的科学问题。离子泵做为生命体内一个重要组成基元,在外界能量驱动下,可以将离子从低浓度输运到高浓度,从而完成生命体内从化学能向电能的转换过程。受离子泵启发,本项目拟构筑基于磁性纳米粒子诱导浓度梯度的仿生离子泵能量转换体系。即将具有磁响应且带有电荷、粒径大于纳米通道直径的纳米粒子水溶液置于固态纳米通道膜两侧,单侧施加强度可变磁场的条件下(在实际应用中可以靠脉搏和海浪的波动实现),纳米粒子可以朝向或者反向纳米通道膜移动,从而诱导膜两侧附近纳米粒子反离子的浓度梯度,使离子选择性通过纳米通道膜,最终实现离子主动跨膜传输,完成从浓差化学能向电能的能量转换过程。本项目所制备的仿生离子泵能量转换体系可以产生1μW/cm2以上的输出功率,比目前报道的生物离子泵的输出功率大3~4个数量级,且不需复杂化学修饰,将在新型能量转换器件领域有重要应用价值。
英文摘要
Energy is an important issue in current world development, thus looking for new way of energy conversion becomes one of the most urgent scientific challenges. Ion pumps as a kind of widely existed component in biological systems, can transfer ions against ion concentration driven by external energy. Inspired by biological ion pumps, we will construct an energy conversion system based on artificial ion pump, that is realized by magnetic nanoparticles induced ion concentration gradient. Specifically, aqueous solutions of charged nanoparticles with diameters larger than those of solid state nanochannels, will be added in the two sides of the nanochannles membrane. Under magnetic field (could be realized by pulse or sea wave in real applications) that applied on one side of the membrane, nanoparticles could be moved to or against the membrane, thus induce concentration gradient of the counter ions in the aqueous solution, followed by an active transport of ions across the membrane, realize the energy conversion from ion concentration chemical energy to electrical energy. The output power of the bioinpired ion pump based energy conversion system would be more than 1μW/cm2, which is 3~4 orders of magnitude larger than that of biological counterparts. Moreover, the method to build this system is very simple, no need of complex chemical modification, therefore this project will be of significant value in the energy conversion devices.
能源问题是当今世界发展的三大主题之一,随着传统的不可再生能源的日益消耗,寻求新型的能量转换体系已经成为目前亟待解决的重大科学问题之一。向自然学习是人类发展的永恒主题,生命体内的离子泵能够利用外界所提供的能量,如光能,化学能等,选择性的将离子从低浓度输运到高浓度,实现离子的主动传输,从而完成生命体内的能量转换过程,这一能量转换过程在肌肉收缩、新陈代谢、生长分化等生命活动过程中有重要的作用。因此,在体外模拟生命体内离子泵的离子传输过程将在仿生新能源领域有重要的意义。本项目制备了一种基于磁性仿生纳米通道的能量转换体系,即通过调控通道结构、纳米粒子性质、反离子性质以及外部刺激等实验参数,诱导膜两侧纳米粒子的反离子浓度梯度,使离子选择性通过纳米通道膜,最终实现离子的主动跨膜传输,完成从浓差化学能向电能的转换过程。本项目所制备的仿生离子泵可以产生 0.01 W/cm2的输出功率。在本项目的资助下,共发表SCI论文19篇,包括Sci. Adv. 1篇,J. Am. Chem. Soc. 3篇,Angew. Chem. Int. Ed. 3篇,Adv. Mater. 2篇,Adv. Funct. Mater. 2篇,Small 1篇,Matter 1篇,ACS Nano4篇,Acs. Appl. Interface. 2篇。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1002/adma.201703120
发表时间:2017-12
期刊:Advanced Materials
影响因子:29.4
作者:Zhu Zhongpeng;Zheng Shuang;Peng Shan;Zhao Yong;Tian Ye
通讯作者:Tian Ye
DOI:10.1021/jacs.7b11472
发表时间:2018
期刊:Journal of the American Chemical Society
影响因子:15
作者:Zhang Zhen;Li Pei;Kong Xiang Yu;Xie Ganhua;Qian Yongchao;Wang Ziqi;Tian Ye;Wen Liping;Jiang Lei
通讯作者:Jiang Lei
DOI:10.1021/acsnano.6b08727
发表时间:2017-02
期刊:ACS nano
影响因子:17.1
作者:Jian Wang;Ruochen Fang;Jue Hou;Huacheng Zhang;Ye Tian;Huanting Wang;Lei Jiang
通讯作者:Jian Wang;Ruochen Fang;Jue Hou;Huacheng Zhang;Ye Tian;Huanting Wang;Lei Jiang
DOI:10.1021/acsami.9b18957
发表时间:2019
期刊:ACS Applied Materials & Interfaces
影响因子:9.5
作者:He Liu;Shuang Zheng;Xuan Yang;Wenbo Liao;Can Wang;Weining Miao;Jiayue Tang;Dianyu Wang;Ye Tian
通讯作者:Ye Tian
Superamphiphilic Silicon Wafer Surfaces and Applications for Uniform Polymer Film Fabrication
超两亲性硅片表面及其在均匀聚合物薄膜制造中的应用
DOI:10.1002/anie.201700039
发表时间:2017
期刊:Angewandte Chemie-International Edition
影响因子:16.6
作者:Zhu Zhongpeng;Tian Ye;Chen Yupeng;Gu Zhen;Wang Shutao;Jiang Lei
通讯作者:Jiang Lei
基于棒状植物病毒的多糖结合疫苗用于预防细菌/真菌感染研究
水和有机溶剂分子在界面的亲疏界限研究
基于多功能化生物纳米粒子/血小板复合体的RNA干扰系统用于纤维化抑制研究
基于规整蛋白组装体的靶向抗肿瘤药物载体的研究
国内基金
海外基金