高斯白噪声激励下压电-电磁混合式粘弹俘能系统的动力学研究

批准号:
12002089
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
孙亚辉
依托单位:
学科分类:
非线性振动及其控制
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
孙亚辉
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
振动俘能技术是解决微型电子设备长期供能问题的有效途径,已成为当今科学研究的热点之一。压电-电磁混合式振动俘能系统能够有效地拓展工作频宽并提高俘能效率,因此得到广泛关注。目前的研究工作,较少考虑随机扰动对混合式俘能系统动力学行为的影响,而且忽略了俘能系统材料本身的粘弹性。本项目拟以高斯白噪声激励下压电-电磁混合式粘弹俘能系统为研究对象,研究其动力学行为。主要内容有:基于随机平均法、变量变换方法和近似等价方法,研究系统的随机响应及分岔、稳定性和首次穿越问题,揭示高斯白噪声和粘弹材料对混合式俘能系统动力学行为的作用机制,讨论噪声、粘弹项和系统参数对系统俘能效率的影响。本项目可进一步丰富混合式振动俘能系统的研究成果,为实际工程中混合式振动俘能系统的最优设计和控制提供科学依据。
英文摘要
Vibration energy harvesting, which is an effective approach to provide a long-term power supply for microelectronic devices, has being a research focus. The hybrid piezoelectric and electromagnetic vibration energy harvester can effectively expand the operating bandwidth and improve the efficiency of harvesting energy; therefore, it has received widespread attention. Currently, the research work seldom considers the effect of random disturbances on the hybrid energy harvester, and ignores the viscoelastic properties of the system materials. This project aims at studying the dynamic behavior of a hybrid piezoelectric and electromagnetic viscoelastic vibration energy harvester excited by Gaussian white noise. The response, stability and first passage problems of the system are studied with the help of the stochastic average method, the variable transformation method and the approximate equivalent method; the mechanisms of random noise and viscoelastic materials on the hybrid energy harvester are revealed; the effects of noise, viscoelastic terms and system parameters on the efficiency of harvesting energy are discussed. This project will further enrich the research results of the hybrid vibration energy harvester and present scientific basis for the optimal design and control of the hybrid vibration energy harvester in practical engineering.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation
高斯白噪声激励下粘弹性能量收集系统的随机响应
DOI:10.1016/j.chaos.2021.111231
发表时间:2021-10
期刊:Chaos Solitons & Fractals
影响因子:7.8
作者:Guo Shu-Ling;Yang Yong-Ge;Sun Ya-Hui
通讯作者:Sun Ya-Hui
DOI:10.1016/j.probengmech.2023.103464
发表时间:2023-05
期刊:Probabilistic Engineering Mechanics
影响因子:2.6
作者:Yahui Sun;Yongtao Sun;Yong-Ge Yang;Wei Xu
通讯作者:Yahui Sun;Yongtao Sun;Yong-Ge Yang;Wei Xu
Stochastic bifurcations of a fractional-order vibro-impact oscillator subjected to colored noise excitation
有色噪声激励下分数阶振动冲击振荡器的随机分岔
DOI:10.1142/s0218127421501777
发表时间:2021
期刊:International Journal of Bifurcation and Chaos
影响因子:2.2
作者:Sun Ya-Hui;Yang Yong-Ge;Hong Ling;Xu Wei
通讯作者:Xu Wei
DOI:10.1016/j.ymssp.2022.109837
发表时间:2023
期刊:Mechanical Systems and Signal Processing
影响因子:8.4
作者:Yong-Ge Yang;Mei-Ling Huang;Shu-Ling Guo;Ya-Hui Sun
通讯作者:Ya-Hui Sun
Stochastic P-bifurcations of a noisy nonlinear system with fractional derivative element
具有分数阶导数元的噪声非线性系统的随机 P 分岔
DOI:10.1007/s10409-020-01020-8
发表时间:2021-01
期刊:Acta Mechanica Sinica
影响因子:3.5
作者:Sun Ya-Hui;Yang Yong-Ge;Xu Wei
通讯作者:Xu Wei
国内基金
海外基金
