融合深度流形度量学习和先验信息的无标记心脏影像应力场建模关键技术研究
结题报告
批准号:
61971076
项目类别:
面上项目
资助金额:
65.0 万元
负责人:
王旭初
依托单位:
学科分类:
医学信息检测与处理
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
王旭初
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
心脏应力场建模是心脏影像分析的核心技术,能为心脏疾病的定量解释、诊断与预防提供准确全面的依据。无标记四维心脏CTA和电影MRI蕴含着细微的三维动态应力场特征,但受影像模糊、组织密度混叠、目标运动复杂、机器学习技术挖掘目标先验信息能力不足等因素影响,优质建模方法极为匮乏。对此,该项目研究可解释性强的深度流形度量学习(DMML)新方法并应用于心脏应力场建模关键环节,通过融合DMML与心脏形态运动先验的深度表达来提高建模精度。内容包括DMML算法、四维心脏图谱集构建、心脏粗分割、多目标迭代软分割、运动估计,着重对适用于心脏图像的流形学习和图嵌入、嵌入流形学习卷积层的深度孪生网络、心脏分割与运动估计中边界图像相似性度量等关键技术展开系统深入的研究,注重利用多相CTA/MRI图像验证和改进算法。该课题对延拓深度度量学习理论内涵与新型应用,推动心脏建模发展有积极作用,也能为心脏病诊断提供技术支持。
英文摘要
It is a key and challenging technique of building the stress filed of left ventricular and its myo-/endo-/epi-cardium muscles in the research area of computer-aided cardiac imaging analysis and diagnosis, since this field can express the underlying, objective and quantitative diagnostic indices and parameters to help the explanation of morphological variations, diagnosis, and tracking of the cardiac ventricle change. Due to the facts such as rather obscure beating heart, highly variable structures, and mixed organs during the image capturing and reconstruction process, as well as the absence of advanced machine learning-based strategy to thoroughly explore the geometric and movement prior information in most traditional methods, existing stress field models are usually of low accuracy. To address this, in this proposal, new deep manifold metric learning methods (DMML) with good interpretable characteristics will be investigated and applied to cardiac ventricle stress field modeling of the four dimensional untagged CTA (computer tomography angiography)and cine MRI (magnetic resonance imaging) data sets. The characteristic of this proposal lies on combining DMML and prior information (such as the geometry, shape, and motion) in cardiac image data sets to advance the development of accurate ventricle stress field modeling. This research proposal mainly includes the exploration of DMML training and modification specific to the cardiac anatomic and imagery structure for improving the accuracy in cardiac stress modeling, four dimensional cardiac atlas set construction, cardiac multiple objects coarse segmentation their iterated soft segmentation, and motion estimation. The shape or motion prior information will be built by the libraries of shape image or motion image trained by deep metric learning strategy. The investigation will focus on the technologies related to efficient manifold learning and graph embedding techniques specific to cardiac images, the deep metric networks such as siamense networks that contain the manifold learning-based convolutional layers, the coarse and iterated soft segmentation of multiple cardiac tissues, as well as the endocardium and epicardium motion estimation in this region because they essentially determine the quality of the stress field. It will also focus on using the practical CTA and MRI data with multiple time-points to validate and improve the technique and corresponding algorithms. Both theoretical and practical achievements will be obtained if this proposal is supported. Theoretically, new deep manifold metric learning methods will be presented, and the solution for cardiac segmentation, motion estimation, stress field analysis in cardiac modeling methodology will be put forward with large steps. Practically, the research algorithms and software can provide assistance in daily cardiac diagnosis clinic, cardiac surgery simulation, and statistical analysis on cardiac disease.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3390/s21113693
发表时间:2021-05-26
期刊:Sensors (Basel, Switzerland)
影响因子:--
作者:Wang X;Wang F;Niu Y
通讯作者:Niu Y
DOI:--
发表时间:2020
期刊:光学学报
影响因子:--
作者:王旭初;刘辉煌;牛彦敏
通讯作者:牛彦敏
DOI:10.1016/j.neucom.2020.02.069
发表时间:2020-07
期刊:Neurocomputing
影响因子:6
作者:Xuchu Wang;Suiqiang Zhai;Yanmin Niu
通讯作者:Xuchu Wang;Suiqiang Zhai;Yanmin Niu
DOI:10.3390/s23177430
发表时间:2023-08-25
期刊:Sensors (Basel, Switzerland)
影响因子:--
作者:Wang X;Yuan Y;Liu M;Niu Y
通讯作者:Niu Y
DOI:10.1007/s10278-022-00708-6
发表时间:2022-09
期刊:Journal of Digital Imaging
影响因子:4.4
作者:Xuchu Wang;Fusheng Wang;Yanmin Niu
通讯作者:Xuchu Wang;Fusheng Wang;Yanmin Niu
融合图像先验基元自学习的“少样本欠标注”心脏协同运动估计方法 研究
  • 批准号:
    --
  • 项目类别:
    省市级项目
  • 资助金额:
    0.0万元
  • 批准年份:
    2024
  • 负责人:
    王旭初
  • 依托单位:
鉴别性统计建模-主动轮廓演化器及其在可视人图像分割的应用
  • 批准号:
    60903142
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    18.0万元
  • 批准年份:
    2009
  • 负责人:
    王旭初
  • 依托单位:
国内基金
海外基金