负β变换下的丢番图逼近问题研究

批准号:
11701261
项目类别:
青年科学基金项目
资助金额:
25.0 万元
负责人:
胡慧
依托单位:
学科分类:
A0204.几何测度论与分形
结题年份:
2020
批准年份:
2017
项目状态:
已结题
项目参与者:
张晗玥、陈敏霞
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
数论中动力系统的丢番图逼近问题,不仅与数的展式的度量和维数理论密切相关,也是分形几何和动力系统研究的热点问题之一。本项目研究负β变换下的丢番图逼近问题。与经典β变换不同,负β变换往往没有拓扑传递性,其不变测度的支撑也不一定是整个单位区间。我们的研究内容主要为:.一、负β变换测度和拓扑性质的精细刻画,即不变测度的φ-混合性和负β变换的specification性质及相关分形集。.二、负β变换下的丢番图逼近问题,主要包括负β变换下轨道的分布;负β变换下临界点的常返问题;以及负β变换下的收缩靶、移动靶和相关分形集。
英文摘要
Diophantine approximations of dynamical systems arising from the number theory are not only related to metric and dimensional theory of expansions of numbers, but also hot topics of dynamical systems and fractals. We study the Diophantine approximations of the negative beta transformation. Different from the classical beta transformation from number theory, the negative beta transformation may not be topological transitive and the support of its invariant measure may not be the whole unit interval. Specifically, we study the following problems..1. We study the fine properties of the measure-theoretical and topological dynamical systems for the negative beta transformation. More precisely, we study the φ-mixing property of the invariant measure and the specification property of the negative beta transformation..2. We study Diophantine approximations of the negative beta transformation. It includes the distribution of orbits under the negative beta transformation, the recurrent problems of critical points, the shrinking targets and moving targets problems, and related fractals.
数论中动力系统的丢番图逼近问题,不仅与数的展式的度量和维数理论密切相关,也是分形几何和动力系统研究的热点问题之一。本项目研究了负β变换下的丢番图逼近问题,同时也研究了一些其他数的展式字符分布的度量性质。与经典β变换不同,负β变换往往没有拓扑传递性,其不变测度的支撑也不一定是整个单位区间。我们的研究内容主要为:.一、负β变换测度和拓扑性质的精细刻画,即不变测度的φ-混合性和负β变换的specification性质及相关分形集。.二、负β变换下的丢番图逼近问题,主要包括负β变换下轨道的分布,负β变换下临界点的常返问题以及负β变换下的相关分形集。.同时,我们也研究了各类连分数: 经典连分数、Engel连分数展式、p-adic连分数、以及形式级数域上连分数展式字符分布的度量性质。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
On the digits of Schneider's p-adic continued fractions
关于施奈德 p 进连分数的数字
DOI:10.1016/j.jnt.2017.11.005
发表时间:2017-12
期刊:Journal of Number Theory
影响因子:0.7
作者:Hu Hui;Yu Yueli;Zhao Yanfen
通讯作者:Zhao Yanfen
国内基金
海外基金
