Finsler旋流形的几何特征和物理应用

批准号:
12001099
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
沈斌
依托单位:
学科分类:
整体微分几何
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
沈斌
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
本项目主要研究Finsler旋流形及其几何性质与拓扑、代数结构和物理的关系。核心思想是利用Finsler-Bochner技巧及相应几何量证明消灭定理并探讨Finsler旋结构在李代数、复流形和理论物理中的应用。该研究方法具有普适性,其结果有重要的理论价值。通过推广Weitzenböck公式、考察调和旋空间、计算Finsler流形的Chern-Simons作用量的临界形式,可得到Finsler旋量场的强消灭定理、Kähler-Finsler全纯上同调群的同构定理、退化椭圆算子的几何刻画等结果,并初步描述高阶旋结构度规场的Chern-Simons理论。其中所反映出的关键科学问题是Finsler几何量的物理意义及其拓扑影响。项目的研究将拓展Finsler几何的理论框架和应用范围,并为理论物理提供一种更广泛的几何背景。因此,对Finsler几何的研究与发展有着重要的理论和应用价值。
英文摘要
Studying the effects of metrics on the topological properties of a manifold is an essential problem in differential geometry. Although introduced for the first time a century ago, Finsler metrics is still far from mature in applications to topological, algebraic and physical structures on manifolds. In this proposal, we mainly study the Finsler spin manifolds and the relations between its geometric properties and its physical, topological and algebraic structures. The essential method is to use the Finsler-Bochner technique and the relevant concepts to study various vanishing theorems..The research method holds good university, and its results have important theoretical values. The research includes three aspects: (1) Strong vanishing theorem on the Finsler spin manifold and its applications to Lie algebraic structures of Finsler manifolds; (2) Relations between the spinor and the holomorphic cohomology groups, as well as between the degenerated Dirac operators and canonical line bundle, on the complex Finsler manifolds; (3) Finsler Chern-Simons action with its Euler-Lagrange equation, and the Finsler Kapustin-Witten Weitzenböck formula..The above three aspects describe the geometric character of the degenerated elliptic operator and describe elementally the Chern-Simons theory of the three dimensional SL(N,R)×SL(N,R) under the Finsler metrics (i.e., the applications of the higher order spinor gauge fields). This research will extend the applications of Finsler geometry on mathematical physics and theoretical physics. Furthermore, it will also provide a new geometric explanation to some issues of modern mathematics. The study of this project would be quite meaningful for the research and development of Finsler geometry and its applications.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.geomphys.2023.104999
发表时间:2023-09
期刊:Journal of Geometry and Physics
影响因子:1.5
作者:Bin Shen
通讯作者:Bin Shen
DOI:10.1016/j.jmaa.2020.124712
发表时间:2021-03
期刊:Journal of Mathematical Analysis and Applications
影响因子:1.3
作者:B. Shen;Zisu Zhao
通讯作者:B. Shen;Zisu Zhao
DOI:10.3390/universe9030153
发表时间:2023-03
期刊:Universe
影响因子:2.9
作者:Bin Shen;Mingyang Yu
通讯作者:Bin Shen;Mingyang Yu
DOI:10.1017/s0017089522000313
发表时间:2022
期刊:Glasgow Mathematical Journal
影响因子:--
作者:Xiaoli Chao;Bin Shen;Miaomiao Zhang
通讯作者:Miaomiao Zhang
国内基金
海外基金
