变工况下旋转机械装备故障特征统计量及健康指数理论基础研究
结题报告
批准号:
51975355
项目类别:
面上项目
资助金额:
63.0 万元
负责人:
王冬
依托单位:
学科分类:
机械动力学
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
王冬
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
旋转机械装备故障特征统计量和健康指数在状态监测、故障诊断和寿命预测中起着重要的支撑作用。当前故障特征统计量和健康指数的研究还停留在实验验证阶段,制约了故障诊断理论基础的完善。针对这一问题,本项目拟开展从实验结合理论的角度来研究故障特征统计量和健康指数:(1)研究峭度、平滑指数、熵及基尼指数理论基础,推导出时域统计量和频域包络谱统计量的权重来同时量化脉冲性和循环平稳性,并建立变工况与上述统计量间的数学关系,且进一步研究健康指数和故障程度间的数学联系,揭示造成健康指数强波动性的原因;(2)研究上述统计量的统一数学表达式,揭示量化脉冲性或循环平稳性的一类统计量,并建立与深度神经网络的平行关系。通过对统一数学表达式参数优化,为不同研究对象设计新一代统计量;(3)基于预期新理论,研究故障特征提取与健康指数构造新方法。研究成果利于完善故障诊断理论基础,为设计出变工况下状态监测和故障诊断新方法提供指引。
英文摘要
Fault features and health indicators of rotating machinery play an important role in condition monitoring, fault diagnosis and prognostics. Current investigations on fault features and health indicators of rotating machinery are mainly supported by using experimental results, which lacks of thoroughly theoretical supports. To solve this problem, this project will conduct experimental and theoretical investigations on fault features and health indicators of rotating machinery, including:(1) to theoretically investigate kurtosis, smoothness index, entropy and Gini index for quantification of the impulsiveness and cyclostationarity of repetitive transients caused by early rotating machine faults and then to derive mathematical weights for balancing fault features in a time domain and fault features of squared envelope spectra in a frequency domain; to theoretically investigate how speeds and loads influence changes of the aforementioned fault features and then to build their mathematical relationship for fault features working at varying operating conditions; to theoretically investigate the relationship between health indicators and fault levels so as to discover the causes that result in strong fluctuations of health indicators; (2) to theoretically investigate an unified framework of the aforementioned fault features and then to reveal a class of fault features that can be used to quantify impulsiveness or cyclostationarity of repetitive transients, and then to investigate its parallel relationship with deep Neural networks; to investigate parameters optimization of the unified framework so as to design a new generation of fault feature for a specific object; (3) based on expected new theories, new methods for condition monitoring and fault diagnosis at varying operating conditions will be designed. Expected outcomes from this project will enrich theoretical foundations for early fault diagnosis of rotating machinery, will guide researchers to design more and more new condition monitoring and fault diagnosis methods, and will provide strong and solid foundations for enhancing the reliability and safety of rotating machinery.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Extracting cyclo-stationarity of repetitive transients from envelope spectrum based on prior-unknown blind deconvolution technique
基于先前未知的盲反卷积技术从包络谱中提取重复瞬态的循环平稳性
DOI:10.1016/j.sigpro.2021.107997
发表时间:2021-06
期刊:Signal Process
影响因子:--
作者:Liu He;Dong Wang;Cai Yi;Qiuyang Zhou;Jianhui Lin
通讯作者:Jianhui Lin
DOI:10.1016/j.ymssp.2020.107451
发表时间:2021-04
期刊:Mechanical Systems and Signal Processing
影响因子:8.4
作者:Bingchang Hou;Dong Wang;Tangbin Xia;Yi Wang;Yang Zhao;K. Tsui
通讯作者:Bingchang Hou;Dong Wang;Tangbin Xia;Yi Wang;Yang Zhao;K. Tsui
Fully interpretable neural network for locating resonance frequency bands for machine condition monitoring
完全可解释的神经网络,用于定位机器状态监测的共振频带
DOI:10.1016/j.ymssp.2021.108673
发表时间:2021-11-29
期刊:MECHANICAL SYSTEMS AND SIGNAL PROCESSING
影响因子:8.4
作者:Wang, Dong;Chen, Yikai;Li, Chuan
通讯作者:Li, Chuan
Integration of a Novel Knowledge-Guided Loss Function With an Architecturally Explainable Network for Machine Degradation Modeling
将新颖的知识引导损失函数与用于机器退化建模的架构可解释网络相集成
DOI:10.1109/tim.2022.3193196
发表时间:2022
期刊:IEEE Transactions on Instrumentation and Measurement
影响因子:5.6
作者:Tongtong Yan;Yichu Fu;Ming Lu;Zhinong Li;Changqing Shen;Dong Wang
通讯作者:Dong Wang
DOI:10.1109/tase.2020.2994741
发表时间:2021-07
期刊:IEEE Transactions on Automation Science and Engineering
影响因子:5.6
作者:Wang Dong;Peng Zhike;Xi Lifeng
通讯作者:Xi Lifeng
国内基金
海外基金