黎曼几何中的Laplace和体积比较定理及其应用
批准号:
11971168
项目类别:
面上项目
资助金额:
53.0 万元
负责人:
朱萌
依托单位:
学科分类:
整体微分几何
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
朱萌
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
Laplace和体积比较定理,及由此发展出的Cheeger-Colding-Tian-Naber结构理论是研究黎曼流形几何和拓扑性质的重要工具。申请人在这方面的主要成果有:1.证明了Bakry-Émery Ricci曲率条件下的比较定理,推广了大部分的结构理论,包括Cheeger-Naber著名的余维4定理;2.将Anderson调和半径估计的正则性减弱了整整一阶,使该结果在20多年后取得进一步突破;3.三十多年来首次不假设Ricci曲率有下界,证明了仅依赖于Ricci曲率积分界的Li-Yau不等式,并研究了它们与Laplace比较定理的关系。在此基础上,本课题将围绕以下问题展开:1.在Bakry-Émery Ricci曲率条件下进一步改进比较定理并推广结构理论;2.改进Ricci曲率积分条件下的Li-Yau不等式,证明Laplace比较定理;3.探索更一般曲率条件下的比较定理和结构理论。
英文摘要
The Cheeger-Colding-Tian-Naber structure theory was developed from Laplace and Volume Comparison Theorems. Comparison theorems and the structure theory are essential tools in the study of the geometric and topological properties of Riemannian manifolds. Main achievements of the applicant include: 1. established comparison theorems under Bakry-Émery Ricci curvature condition, and generalized the majority of the structure theory which includes the famous codimension 4 theorem of Cheeger and Naber; 2. proved that the regularity of Anderson's harmonic radius estimate can be significantly reduced by exactly 1 order, which is a further improvement on this result after more than 20 years;3. for more than 30 years, all Li-Yau inequalities on Riemannian manifolds are established under the assumption that the Ricci curvature has certain point-wise lower bound. We are the first ones who discovered Li-Yau inequalities based on integral bounds of the Ricci curvature, which is a much weaker condition. Moreover, the relation between Li-Yau inequalities and Laplace comparison theorem was investigated. Based on previous works, this project will concentrate on the following problems: 1. further improve the comparison theorems and generalize the structure theory under Bakry-Émery Ricci curvature condition; 2. refine Li-Yau inequalities and prove Laplace comparison theorem under integral Ricci curvature conditions; 3. explore volume comparison theorem and the structure theory under more general curvature conditions.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:https://doi.org/10.1007/s00222-020-00973-8
发表时间:2020
期刊:Inventiones Mathematicae
影响因子:--
作者:刘博;Xiaonan Ma
通讯作者:Xiaonan Ma
DOI:https://doi.org/10.4134/BKMS.b220830
发表时间:2023
期刊:Bulletin of the Korean Mathematical Society
影响因子:0.5
作者:Ling Wu
通讯作者:Ling Wu
DOI:https://doi.org/10.4134/JKMS.j220589
发表时间:2023
期刊:Journal of the Korean Mathematical Society
影响因子:--
作者:Xingyu Song;Ling Wu
通讯作者:Ling Wu
DOI:10.1016/j.geomphys.2023.104997
发表时间:2023-06
期刊:Journal of Geometry and Physics
影响因子:1.5
作者:Xin Song;Ling Wu;Meng Zhu
通讯作者:Xin Song;Ling Wu;Meng Zhu
DOI:10.1007/s11118-022-10062-5
发表时间:2021-08
期刊:Potential Analysis
影响因子:1.1
作者:Ling Wu;Xin Song;Meng Zhu
通讯作者:Ling Wu;Xin Song;Meng Zhu
Ricci孤立子上的几何与分析
- 批准号:--
- 项目类别:省市级项目
- 资助金额:0.0万元
- 批准年份:2025
- 负责人:朱萌
- 依托单位:
Ricci流中的椭圆与抛物估计及其在奇点分析中的应用
- 批准号:11501206
- 项目类别:青年科学基金项目
- 资助金额:18.0万元
- 批准年份:2015
- 负责人:朱萌
- 依托单位:
国内基金
海外基金















{{item.name}}会员


