课题基金基金详情
蜕变测试驱动的深度学习软件调试技术研究
结题报告
批准号:
61972289
项目类别:
面上项目
资助金额:
60.0 万元
负责人:
谢晓园
依托单位:
学科分类:
软件理论、软件工程与服务
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
谢晓园
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
深度学习软件的质量问题是阻碍该技术广泛应用的一大瓶颈,已日渐成为业内共同关注的焦点。然而现阶段针对其测试驱动的调试技术研究仍极为薄弱,亟待深入开展。本项目旨在面向这一紧迫需求,研究形成一套完整系统的理论方法及工具。研究内容包括:(1)提出基于蜕变关系的软件输出验证充分性准则;(2)构建基于张量数据流的深度学习模型频谱;(3)设计基于多目标差分进化的深度学习delta调试算法;(4)开发相应的蜕变关系共享库与工具套件平台。本项目创新性地结合蜕变测试与张量数据流,构建与测试结果相耦合并具有良好解释性的白盒数据结构,以解决深度学习软件“测试谕言缺失”与“黑盒属性”两大特点所导致的调试困难,突破现有研究中的若干瓶颈。并通过将调试问题建模为多目标优化问题,从而形成完整的由测试驱动的自动化调试方案。本项目的研究符合当前紧迫需求,对于深度学习软件的质量保障具有重要的理论与应用价值。
英文摘要
Quality issue in deep learning software has been one of the significant bottlenecks in the promotion of relevant techniques, and has been a common concern in the community. However, current studies on automatic test-driven debugging for deep learning software are still very few, which urgently need to be studied. This project aims to meet the above requirement, studying and proposing a complete and systematic theory and tools, for automatic debugging on deep learning software. The research contents of this project include: (1) proposing metamorphic-relation-based testing criteria for output behavior coverage; (2) constructing tensor-flow-based spectrum for deep learning models; (3) designing delta debugging algorithm with multiple-object differential evolution; (4) implementing shared repository of metamorphic relations and building testing and debugging platform. This project innovatively combines metamorphic testing and tensor flow information, and builds well-descriptive white-box data structure that tightly couples testing results, in order to settle the difficulties from the “oracle problem” and “black-box property” of deep learning software, as well as to make a few breakthroughs. Besides, it will model the debugging task into a multiple-object optimization problem, and as a consequence form a complete automatic test-driven debugging solution. This project precisely meets current urgent requirement, and has very important theoretical value and practical value for deep learning software quality assurance.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
MULA: A Just-In-Time Multi-labeling System for Issue Reports
MULA:问题报告的即时多重标签系统
DOI:10.1109/tr.2021.3074512
发表时间:2022-03
期刊:IEEE Transactions on Reliability
影响因子:5.9
作者:Xiaoyuan Xie;Su Yuhui;Songqiang Chen;Lin Chen;Jifeng Xuan;Baowen Xu
通讯作者:Baowen Xu
DOI:10.1007/s11432-022-3803-9
发表时间:2024-02
期刊:Sci. China Inf. Sci.
影响因子:--
作者:Yi Song;Xiaoyuan Xie;Baowen Xu
通讯作者:Yi Song;Xiaoyuan Xie;Baowen Xu
DOI:10.1007/s10515-023-00380-2
发表时间:2023-03
期刊:Automated Software Engineering
影响因子:3.4
作者:Xiaoyuan Xie;Shuo Jin;Songqiang Chen
通讯作者:Xiaoyuan Xie;Shuo Jin;Songqiang Chen
DOI:10.1016/j.jss.2022.111452
发表时间:2022
期刊:Journal of Systems and Software
影响因子:--
作者:Yi Song;Xiaoyuan Xie;Quanming Liu;Xihao Zhang;Xi Wu
通讯作者:Xi Wu
智能化软件缺陷定位
  • 批准号:
    --
  • 项目类别:
    --
  • 资助金额:
    80万元
  • 批准年份:
    2022
  • 负责人:
    谢晓园
  • 依托单位:
Oracle缺失的大规模软件缺陷定位技术的研究
  • 批准号:
    61572375
  • 项目类别:
    面上项目
  • 资助金额:
    63.0万元
  • 批准年份:
    2015
  • 负责人:
    谢晓园
  • 依托单位:
国内基金
海外基金