电场/铁电衬底调控二维本征磁性拓扑绝缘体的新型拓扑场效应管研究

批准号:
12004295
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
李平
依托单位:
学科分类:
凝聚态物质电子结构
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
李平
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
降低场效应管尺寸被认为是提高电子器件功能和运算速率的有效途径之一,但随之而来的散热和功耗问题将更为突出,成为阻碍微纳电子技术发展的重要瓶颈。利用量子反常霍尔效应(QAHE)边界无耗散的电流研发新型拓扑场效应管,有望解决这一技术难题。众所周知,二维本征磁性拓扑绝缘体是实现QAHE的理想体系,但是如何有效调控QAHE设计出新型拓扑场效应管是急需解决的科学难题。本项目创新性的提出利用电场/铁电衬底调控二维本征磁性拓扑绝缘体磁化方向及其拓扑相变,将有无边缘电流定义为逻辑“1”、“0”态,从而设计出低功耗、高集成度和高速的新型拓扑场效应管。本项目将结合第一性原理与理论模型,从电场/铁电衬底对二维本征磁性拓扑绝缘体晶格、电荷、轨道和自旋四种序参量引起的变化出发,揭示调控其磁化方向及其拓扑相变的物理机制。本项目的研究成果将为实现新型拓扑场效应管的研发提供理论支撑,有助于推动我国低功耗电子信息技术的发展。
英文摘要
Reducing the size of the field effect transistor (FET) is considered to be one of the most effective ways to improve the function and operation rate of electronic devices. However, the issues of heat dissipation and power consumption are becoming increasingly serious, which has become an important bottleneck hindering the development of micro-nano electronic devices. Fortunately, using the edge current of quantum anomalous Hall effect (QAHE) to develop a low-power-consumption topological field effect transistor (TFET) has considered as one promising strategy to solve this scientific problem. Specially, two-dimensional intrinsic magnetic topological insulators are ideal system to realize QAHE. In this project, we propose that throuth the construction of electric filed or ferroelectric substrate, the accurate tunable of magnetization direction and topological phase transitions can be realized. The presence or absence of edge current is defined as logic "1" "0" states, so as to realize a TFET with low-power-consumption, high integration and high speed. Combining the first-principles, Wannier functions, tight binding models and kp effective models, the physical mechanism of topological phase transition can be clearly revealed based on the four order parameters (lattice, charge, orbit and spin) of two-dimensional intrinsic magnetic topological insulators. This present project will provide strong theoretical support for the realization of TFETs, which may also promote the development of electronic devices and information technology in our country.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1039/d0se01516d
发表时间:2021
期刊:Sustainable Energy & Fuels
影响因子:5.6
作者:Zhen Zhang;Cheng Jiang;Ping Li;Qi Feng;Zhiliang Zhao;Keguang Yao;Jiantao Fan;Hui Li;
通讯作者:Zhen Zhang;Cheng Jiang;Ping Li;Qi Feng;Zhiliang Zhao;Keguang Yao;Jiantao Fan;Hui Li;
Nanopore-Patterned CuSe Drives the Realization of the PbSe-CuSe Lateral Heterostructure
纳米孔图案 CuSe 推动 PbSe-CuSe 横向异质结构的实现
DOI:10.1021/acsami.2c08397
发表时间:2022
期刊:ACS Applied Materials & Interfaces
影响因子:9.5
作者:Bo Li;Jing Wang;Qilong Wu;Qiwei Tian;Ping Li;Li Zhang;Long-Jing Yin;Yuan Tian;Ping Kwan Johnny Wong;Zhihui Qin;Lijie Zhang
通讯作者:Lijie Zhang
DOI:10.1021/acsaem.2c03687
发表时间:2022-10
期刊:ACS Applied Energy Materials
影响因子:6.4
作者:Wei Xun;Xiao Yang;Q. Jiang;Mingchao Wang;Yinqiong Wu;Ping Li
通讯作者:Wei Xun;Xiao Yang;Q. Jiang;Mingchao Wang;Yinqiong Wu;Ping Li
Giant tunable spin Hall angle in sputtered Bi(2)Se(3) controlled by an electric field.
电场控制的溅射 Bi2Se3 中巨大的可调谐自旋霍尔角
DOI:10.1038/s41467-022-29281-w
发表时间:2022-03-28
期刊:Nature communications
影响因子:16.6
作者:Lu Q;Li P;Guo Z;Dong G;Peng B;Zha X;Min T;Zhou Z;Liu M
通讯作者:Liu M
DOI:10.1103/physrevb.108.195424
发表时间:2023-11
期刊:Physical Review B
影响因子:3.7
作者:Ping Li;Chao Wu;Cheng Peng;Mutian Yang;Wei Xun
通讯作者:Ping Li;Chao Wu;Cheng Peng;Mutian Yang;Wei Xun
狭窄空腔内冲击射流的二次射流自激发机制及其对根管冲洗影响的研究
- 批准号:51976152
- 项目类别:面上项目
- 资助金额:58.0万元
- 批准年份:2019
- 负责人:李平
- 依托单位:
纳米流体冲击射流冷却中的靶面冲蚀磨损机理研究
- 批准号:51506162
- 项目类别:青年科学基金项目
- 资助金额:20.0万元
- 批准年份:2015
- 负责人:李平
- 依托单位:
国内基金
海外基金
