课题基金基金详情
面向MRI脑肿瘤分割的深度神经网络模型与方法研究
结题报告
批准号:
61972062
项目类别:
面上项目
资助金额:
58.0 万元
负责人:
张建新
依托单位:
学科分类:
生物信息计算与数字健康
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
张建新
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
本项目以对疾病诊疗和人类认知了解具有重要作用的MRI脑影像为对象,以新一代人工智能中突破性的深度学习方法为依托,针对脑肿瘤精细标注样本数量不足与深度神经网络模型训练的大量标签数据需求问题,开展面向MRI脑肿瘤分割的深度神经网络新模型与方法研究。首先,从加强网络特征表达能力出发,引入具有高判别能力的高阶统计特征建模方法,构建基于高阶统计特征建模的MRI脑肿瘤深度分割网络;其次,从提高网络定位能力着手,对高性能目标检测网络进行任务迁移,探索基于区域卷积神经网络的MRI脑肿瘤分割新网络;然后,从脑肿瘤精细标注样本生成着手,开展基于生成对抗网络的MRI脑肿瘤分割网络研究;最后,基于研究方法来开发实用性的MRI脑肿瘤自动分割系统。项目研究有助于提升MRI脑肿瘤分割的研究水平,并可为相关研究提供一定方法借鉴,对于辅助脑疾病临床诊疗、开展大脑结构和功能分析也具有重要意义。
英文摘要
This project takes MRI brain imaging that plays an important role in disease diagnosis and human cognition as research object. Based on the breakthrough deep learning methods in the new generation artificial intelligence, it focuses on new models and methods of deep neural networks for MRI brain tumor segmentation task, aiming at resolving the problem caused by the insufficient fine-labeled brain tumor images and large data requirements of deep learning methods. Firstly, starting from the enhancement of network feature expression ability, high-order statistical feature modeling methods with high discriminative ability are introduced to construct the novel MRI brain tumor depth segmentation networks. Then, to improve the locating capability of the networks, the project tries to transfer the high-precision target detection networks, and constructs new MRI brain tumor segmentation networks based on regional convolutional neural networks. Moreover, aiming at generating more fine-labeled samples of brain tumors, we further explore MRI brain tumor segmentation network based on Generative Adversarial Networks. Finally, a relatively practical automatic MRI brain tumor segmentation system will be developed by using the presented networks. The research results can not only help to improve the research level of MRI brain tumor segmentation, but also provide method reference for the related research. Meanwhile, it is of great significance for the clinical diagnosis of brain diseases, and the function and structure analysis of human brain.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.bspc.2022.104007
发表时间:2022-09
期刊:Biomed. Signal Process. Control.
影响因子:--
作者:Y. Zou;Shannan Chen;Chao Che;Jianxin Zhang;Qiang Zhang
通讯作者:Y. Zou;Shannan Chen;Chao Che;Jianxin Zhang;Qiang Zhang
DOI:10.15888/j.cnki.csa.009394
发表时间:2023
期刊:计算机系统应用
影响因子:--
作者:张建新;刘冬伟;张睦卿;韩雨童;张俊星
通讯作者:张俊星
DOI:10.1088/1361-6560/ac0f30
发表时间:2021-06
期刊:Physics in Medicine & Biology
影响因子:3.5
作者:Qian Wang-;Y. Zou;Jianxin Zhang;B. Liu
通讯作者:Qian Wang-;Y. Zou;Jianxin Zhang;B. Liu
DOI:10.1002/ima.22628
发表时间:2021-07
期刊:International Journal of Imaging Systems and Technology
影响因子:3.3
作者:Y. Zou;Jianxin Zhang;Sha-Wo Huang;B. Liu
通讯作者:Y. Zou;Jianxin Zhang;Sha-Wo Huang;B. Liu
DOI:10.3934/mbe.2022261
发表时间:2022-01-01
期刊:MATHEMATICAL BIOSCIENCES AND ENGINEERING
影响因子:2.6
作者:Liu, Dongwei;Sheng, Ning;Zhang, Jianxin
通讯作者:Zhang, Jianxin
基于DNA计算的掌纹识别研究
  • 批准号:
    61202251
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    23.0万元
  • 批准年份:
    2012
  • 负责人:
    张建新
  • 依托单位:
国内基金
海外基金