基于无人机和深度学习的岩石智能识别及结构面定量表征研究
结题报告
批准号:
52009038
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
陈娜
依托单位:
学科分类:
水工岩土工程
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
陈娜
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
岩石种类和结构面几何参数是岩体质量和稳定性评价的两个核心要素,在“智能建造”的大趋势下,如何实现岩体地质参数解译信息化和智能化是岩体工程领域的热点和难点。本项目综合采用现场调查、室内试验、理论分析和程序研发等方法,开展基于无人机和深度学习的岩石智能识别和结构面定量表征研究。通过搭建可扩充的区域性岩石样本数据集和深度迁移学习算法,构建岩石种类智能识别模型,基于无人机采集的岩体图片、岩石识别模型和图像分割算法,实现实际岩体不同区域的岩石种类识别与边界标定;针对传统方法无法处理无人机海量点云数据的问题,通过研究基于GPU的点云法向量并行计算方法,实现约10~1000倍的加速比。同时,探寻以法向量为核心输入参数的结构面识别算法,可以实现海量点云的高效率、轻参数识别。最终形成一套从岩体数据采集到地质信息解译的智能方法,研究成果可为实现岩体质量和安全评价的数字化、智能化提供有益的理论和技术支撑。
英文摘要
Rock types and discontinuity geometry parameters are two key factors for rock mass quality and stability evaluation. Under the general trend of "intelligent construction", how to realize informatization and intelligentization of rock mass geological parameter interpretation is a hot and difficult research topic in rock engineering field. In this project, a comprehensive method combining field investigation, laboratory test and development, theoretical analysis and procedure development will be adopted to study the intelligent identification of rocks and quantitative characterization of discontinuity based on unmanned aerial vehicle (UAV) and deep learning. An intelligent identification model of rock will be trained using a specific designed deep transfer learning algorithm and an expandable data set of regional rock samples. Moreover, the rock type identification and boundary demarcation for rock mass will be realized based on the rock image collected by UAV, rock identification model and image segmentation algorithm. Aiming at the problem that the traditional method cannot deal with the massive point cloud data generated by UAV, the parallel computing method for the calculation of normal vector based on GPU will be studied to achieve an acceleration ratio of about 10~1000 times. At the same time, the algorithm of discontinuity recognition based on normal vector will be explored, which can realize the high efficiency and light parameter recognition of massive point cloud. Eventually, a complete set of methods including rock mass data collection and geological information interpretation will be formed. The research results can provide theoretical and technical support for digitization and intelligentization of rock mass quality and safety evaluation.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3389/feart.2021.711866
发表时间:2021-08
期刊:
影响因子:--
作者:Na Chen;C. Du;X. Ding
通讯作者:Na Chen;C. Du;X. Ding
DOI:10.3799/dqkx.2020.282
发表时间:2021
期刊:地球科学
影响因子:--
作者:陈娜;蔡小明;夏金梧;张绍和;姜清辉;史超
通讯作者:史超
DOI:10.3389/feart.2022.1015153
发表时间:2023-01
期刊:
影响因子:--
作者:Na Chen;Nan Wang;Yi He;X. Ding;J. Kong
通讯作者:Na Chen;Nan Wang;Yi He;X. Ding;J. Kong
DOI:10.1002/gj.4905
发表时间:2023-11
期刊:Geological Journal
影响因子:1.8
作者:Na Chen;Yinchao Hao;Chuqiang Wang;Jun Zheng
通讯作者:Na Chen;Yinchao Hao;Chuqiang Wang;Jun Zheng
DOI:https://doi.org/10.1007/s10706-023-02692-2
发表时间:2023
期刊:Geotechnical and Geological Engineering
影响因子:1.7
作者:na chen;ao xiao;lihua li;henglin xiao
通讯作者:henglin xiao
国内基金
海外基金