子流形几何、谱理论与拓扑不变量

批准号:
19971081
项目类别:
面上项目
资助金额:
9.0 万元
负责人:
徐森林
依托单位:
学科分类:
A0108.整体微分几何
结题年份:
2002
批准年份:
1999
项目状态:
已结题
项目参与者:
梅加强、夏大峰、祁锋
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
主要研究开流形在何种渐近曲率条件下它等距或微分同胚于Euclid空间,在何种曲率条件下该流形拓扑型有限;闭流形方面,正曲率对拓扑性质的影响,以及正Ricci曲率度量的存在裕唤糁铝餍紊螸aplace算子的谱理论和等谱问题;Yamabe问题,还应用Gromov的整体观点研究极小子流形。已积累了大量资料并发表了许多论文。期望作出具有国际水平的成果。
英文摘要
In this project, we primarily studied Geometry of Submanifolds, Spectrum Theory and Topological Invariants. Through various seminars, looking.up and studying a lot of corresponding papers, participating various civil and.foreign academic activities, visiting other countries and cooperating, we have made some great progress. In the last three years, we have published 24 papers on some important civil and foreign journals, four of which were on SCI journals. I have published a monogragh and fosterd five high-qualified doctors and six.high-qualified masters. My outstanding doctor, Jiaqiang Mei, has been a postdoctor of famous mathematician, Gang Tian and also my outstanding masters, Huadong Pang and Fangyun Yang, have been accepted as his doctors. In the following aspects, we have got some results top in China and of inernational level: 1. Estimate of the first eigenvalue, isospectrum problem and the properties of higher eigenvalues of Laplace operator; 2. Rigidity problem in Geometry of Submanifolds; 3. The relations between curvatures and topological invariants(Betti numbers, Homotopy groups, etc.); 4. ∞ C compactness for minimal submanifolds in the unit.sphere; 5. Small excess and the topology of open manifolds; 6. A class of Jiang spaces.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Minimal submanifolds in locally symmetric spaces
局部对称空间中的最小子流形
DOI:--
发表时间:2005
期刊:Northeast.Math.J.
影响因子:--
作者:Ji Yongqiang;Xu Senlin(徐森林)
通讯作者:Xu Senlin(徐森林)
DOI:--
发表时间:--
期刊:Jurnal of Mathematical Study
影响因子:--
作者:Xu Senlin(徐森林);Song Bingyu(宋冰玉)
通讯作者:Song Bingyu(宋冰玉)
Compact spacelike hypersurfaces with hyperlanar boundary in minkowski space-time
闵可夫斯基时空中具有超线形边界的紧致类空间超曲面
DOI:--
发表时间:--
期刊:Mathematica Applicata
影响因子:--
作者:Xu senlin(徐森林);Shou Leli
通讯作者:Shou Leli
Gap Properties of harmonic maps and submanifolds
调和图和子流形的间隙属性
DOI:--
发表时间:2005
期刊:Archivum Mathematicum(BRNO)Tomus
影响因子:--
作者:Qun Chen;Zhen-Rong Zhou(周振荣)
通讯作者:Zhen-Rong Zhou(周振荣)
Hypersurfaces in space form with scalar curvature conditions
具有标量曲率条件的空间形式的超曲面
DOI:--
发表时间:--
期刊:Acta Mathematica Scientia
影响因子:1
作者:Xu Senlin(徐森林) Zhang Yuntao
通讯作者:Xu Senlin(徐森林) Zhang Yuntao
拉普拉斯算子谱理论和子流形几何
- 批准号:19571078
- 项目类别:面上项目
- 资助金额:7.2万元
- 批准年份:1995
- 负责人:徐森林
- 依托单位:
国内基金
海外基金
