课题基金基金详情
基于FAST数据的脉冲星搜寻智能技术研究
结题报告
批准号:
U2031136
项目类别:
联合基金项目
资助金额:
43.0 万元
负责人:
尹乾
依托单位:
学科分类:
数据、计算和信息提取等应用基础性研究
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
尹乾
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
脉冲星是弱射电源,需要灵敏度高的射电望远镜,FAST应运而生。但FAST搜寻流程中消色散计算DM使用穷举方法;候选体筛选过程通过滤波器过滤信号造成大量漏选,且需要人工筛选非常耗时。因此,如何改进流程得到快速准确的预测模型成为一个要重点研究的问题。同时,由于脉冲星搜寻规格水平迅速提升导致得到的脉冲星数据量以及候选数量成指数水平增长,原有方法的不利影响越来越大,急需新的快速数据处理方法来提高搜寻速度。本项目计划改进脉冲星的搜索流程从而得到快速准确的预测模型,同时研究新的人工智能算法解决候选体筛选技术的不足。着重研究改进智能快速算法并应用到候选体筛选过程中;将非线性DM计算问题转为线性问题解决穷举耗时问题;将Spark的并行优化技术和集成学习方法应用到搜寻流程并行化过程中,为加速科学发现提供强有力的支撑技术。
英文摘要
The pulsar is a weak radio source, which requires high sensitivity radio telescopes, and FAST emerges as the times require. But in the FAST search process, the DM of the dispersion calculation is exhaustive. The candidate screening process filters out the signal through the filter, resulting in a large number of missed entries, and it needs artificial screening, which is a waste of time. Therefore, how to improve the process to get a fast and accurate prediction model has become a key problem to be studied. Meanwhile, due to the rapid improvement of pulsar search specification level, the number and number of pulsar data increase exponentially. The adverse effects of the original method are also increasing. New data processing methods are urgently needed to improve the search speed. This project improves the pulsar search process from the perspective of big data processing, and gets a fast and accurate prediction model. At the same time, we study the new AI algorithm to solve the shortcomings of candidate selection technology. It focuses on improving the fast algorithm in AI technology and applying it to the process of candidate screening. It transforms the nonlinear DM computing problem into a linear problem and solves the exhaustive time consuming problem, and applies the optimization technology of Spark and ensemble learning method to the process to provide strong support technology for speeding up scientific discovery.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:https://doi.org/10.3847/1538-4365/ac9e54
发表时间:2023
期刊:The Astrophysical Journal Supplement Series
影响因子:--
作者:Qian Yin;Yefan Li;Jiajie Li;Xin Zheng;Ping Guo
通讯作者:Ping Guo
DOI:10.1007/s40815-022-01328-6
发表时间:2022-06
期刊:International Journal of Fuzzy Systems
影响因子:4.3
作者:Wenyi Zeng;Rong Ma;Deqing Li;Qian Yin;Zeshui Xu
通讯作者:Wenyi Zeng;Rong Ma;Deqing Li;Qian Yin;Zeshui Xu
DOI:10.1002/int.22960
发表时间:2022-07
期刊:International Journal of Intelligent Systems
影响因子:7
作者:Wenyi Zeng;Rong Ma;Zeping Liu;Yue Xi;Qian Yin;Zeshui Xu
通讯作者:Wenyi Zeng;Rong Ma;Zeping Liu;Yue Xi;Qian Yin;Zeshui Xu
DOI:10.1016/j.neucom.2021.06.041
发表时间:2021
期刊:NEUROCOMPUTING
影响因子:6
作者:Deng Xiaodan;Mahmoud Mohammed A. B.;Yin Qian;Guo Ping
通讯作者:Guo Ping
DOI:10.1007/s00521-022-07824-y
发表时间:2022-10
期刊:Neural Computing and Applications
影响因子:6
作者:Xiaoxuan Sun;Xiaodan Deng;Qian Yin;Ping Guo
通讯作者:Xiaoxuan Sun;Xiaodan Deng;Qian Yin;Ping Guo
二维多光纤光谱图像处理技术研究
  • 批准号:
    61472043
  • 项目类别:
    面上项目
  • 资助金额:
    85.0万元
  • 批准年份:
    2014
  • 负责人:
    尹乾
  • 依托单位:
国内基金
海外基金