众包运营中工人选择及任务分配的动态决策模型研究
结题报告
批准号:
71971148
项目类别:
面上项目
资助金额:
47.0 万元
负责人:
吴志彬
依托单位:
学科分类:
决策与博弈
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
吴志彬
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
众包是一种通过网络平台汇聚群体智慧求解问题的一种新兴商业模式。与质量相关的一系列决策直接影响到众包任务成败及众包商业价值的发挥,因此如何有效提高众包运营质量成为当前众包领域的迫切需求。针对已有研究中考虑工人的异质性、工人与任务的依赖性不足,项目提炼出动态环境下众包工人选择及任务分配等关键问题。(1)结合线下线上信息对工人质量进行动态更新,提出基于贝叶斯自适应学习的工人选择模型。(2)基于部分可观测的马尔科夫决策模型,构建工人动态筛选的优化模型,用于主动识别及剔除低质量的工人。(3)考虑工人去向、工人质量及任务完成程度等动态反馈信息,建立众包任务的在线分配决策模型。对所提出的模型设计求解算法,并通过实际数据及模拟数据验证模型的有效性。研究结果丰富了基于数据驱动的决策模型和方法。项目预期在众包决策领域取得实质进展,为解决众包的质量控制与决策问题提供借鉴。
英文摘要
Crowdsourcing is an emerging business mode that gathers swarm intelligence to solve various kinds of problems through network platforms. A series of quality related decisions directly affect the success or failure of the crowdsourced task and the realization of the commercial value for crowdsourcing. Therefore, how to improve the quality effectively in crowdsourced operation process has become a hot topic being discussed nowadays in the academic field. The existing literature did not fully address the heterogeneity of workers, the dependency between workers and tasks. Based on these shortcomings, this project exploits some of the key issues such as worker selection and task assignment. The main contributions are summarized in the following. (1) The worker quality is dynamically updated based on the available information of both online and offline. A Bayesian adaptive learning based worker selection model is then proposed. (2) Based on the partially observable Markov decision model, an optimization model for dynamic screening workers is constructed to actively identify and eliminate low-quality workers. (3) Considering the dynamic feedback information on workers' whereabouts, worker quality and task completion degree, the dynamic assignment model for crowdsourcing task is established. For each of the proposed decision models, corresponding algorithms are designed, and these models and algorithms are validated by both the realistic data sets and simulated data sets. The results of this study enrich the research of data-driven decision-making models and methods. It is expected to make substantial progress in the field of crowdsourcing decision making, and provide new insights for solving the quality control and decision problems in crowdsourcing.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Controlling the worst consistency index for hesitant fuzzy linguistic preference relations in consensus optimization models
控制一致性优化模型中犹豫模糊语言偏好关系的最差一致性指标
DOI:10.1016/j.cie.2020.106423
发表时间:2020-05
期刊:Computers & Industrial Engineering
影响因子:7.9
作者:Xue Chen;Lijie Peng;Zhibin Wu;Witold Pedrycz
通讯作者:Witold Pedrycz
DOI:10.1016/j.dss.2022.113869
发表时间:2022-09
期刊:Decis. Support Syst.
影响因子:--
作者:Zhibin Wu;Lijie Peng;Chuankai Xiang
通讯作者:Zhibin Wu;Lijie Peng;Chuankai Xiang
DOI:10.1109/tsmc.2022.3178230
发表时间:2023-01
期刊:IEEE Transactions on Systems, Man, and Cybernetics: Systems
影响因子:--
作者:Zhibin Wu;Qinyue Zhou;Yucheng Dong;Jiuping Xu;A. Altalhi;Francisco Herrera
通讯作者:Zhibin Wu;Qinyue Zhou;Yucheng Dong;Jiuping Xu;A. Altalhi;Francisco Herrera
DOI:10.2139/ssrn.4331045
发表时间:2023-03
期刊:Inf. Sci.
影响因子:--
作者:Jiancheng Tu;Zhibin Wu;W. Pedrycz
通讯作者:Jiancheng Tu;Zhibin Wu;W. Pedrycz
Dual models and return allocation for group consensus under weighted average operators
加权平均算子下群体共识的双重模型和收益分配
DOI:10.1109/tsmc.2020.2966015
发表时间:2020
期刊:IEEE Transactions on Systems, Man, and Cybernetics: Systems
影响因子:--
作者:Zhibin Wu;Xieyu Yang;Jiuping Xu
通讯作者:Jiuping Xu
按需交付服务下考虑供需特性的空间众包决策模型研究
  • 批准号:
    72371175
  • 项目类别:
    面上项目
  • 资助金额:
    41.00万元
  • 批准年份:
    2023
  • 负责人:
    吴志彬
  • 依托单位:
大群体偏好下的信息融合与共识理论及其在推荐系统中的应用研究
  • 批准号:
    71671118
  • 项目类别:
    面上项目
  • 资助金额:
    48.0万元
  • 批准年份:
    2016
  • 负责人:
    吴志彬
  • 依托单位:
基于区间二型模糊集的语言群体决策模型及应用研究
  • 批准号:
    71301110
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    20.5万元
  • 批准年份:
    2013
  • 负责人:
    吴志彬
  • 依托单位:
国内基金
海外基金