基于空间偏移拉曼光谱和深度学习的无创血糖检测方法研究
结题报告
批准号:
61975069
项目类别:
面上项目
资助金额:
59.0 万元
负责人:
黄富荣
依托单位:
学科分类:
光谱信息学
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
黄富荣
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
拉曼光谱技术被认为是最有希望实现人体血糖无创检测的技术之一。针对无创血糖检测技术存在信噪比低、校正模型建立困难的问题,项目提出空间偏移拉曼光谱(SORS)和深度学习算法相结合的无创血糖检测方法,提高检测的系统信噪比和模型预测精度,以求血糖预测精度达到5mg/dL的临床应用要求。拟开展SORS无创血糖检测的理论模型研究;高信噪比SORS光谱检测系统设计与优化;子空间特征提取结合深度学习的血糖分析模型构建等研究工作。其创新性为:通过光纤源探距离(ΔS)优化,实现对目标组织的血糖信号采集,减少其他组织层的信号干扰,提高系统的信噪比;通过“球透镜+斜面光纤”光纤探头结构优化,增强入射光光强,增大收光范围,提高系统的信噪比;通过随机子空间法,实现对拉曼光谱更深层次血糖特征信息的挖掘,提高血糖预测精度。项目最终目标是研发一种人体血糖无创高精度检测技术,实现无创血糖临床评估及监测。
英文摘要
Raman spectroscopy is considered one of the most promising technologies for non-invasive detection of human blood glucose. To resolve the issues of current non-invasive blood glucose detection technologies, such as low signal-to-noise ratio and difficulty in establishing the calibration model, this project has proposed a non-invasive blood glucose detection method that combines spatially-offset Raman spectroscopy (SORS) with deep learning algorithms. This novel method can improve the system signal-to-noise ratio and the accuracy of the detection prediction model, so that the clinically-required blood glucose detection accuracy of 5 mg/dL can be satisfied. The project also proposes studying the theoretical model of the SORS non-invasive blood glucose detection technology, design, and optimize an SORS detection system with a high signal-to-noise ratio and establish a blood glucose analysis model that integrates subspace feature extraction with deep learning. This project is innovative because by optimizing the fiber source-detector distance (ΔS), the target tissue’s blood glucose signal is acquired. This process is completed at an escalated signal-to-noise ratio by reducing the signal interference from other tissue layers. By utilizing an optimized “ball lens + bevel fiber” coupled fiber probe, the incident light intensity is enhanced, the light absorption range is increased, and the diffusion photon absorption efficiency is improved. Finally, by investigating deeper blood glucose characteristic information in the Raman spectrum through random subspace, a highly accurate blood glucose calibration model can be established. The ultimate goal of the project is to develop a non-invasive high-precision blood glucose detection technology to achieve clinical evaluation and monitoring of non-invasive blood glucose.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1097/md.0000000000023154
发表时间:2020-11-06
期刊:Medicine
影响因子:1.6
作者:Huang F;Guang P;Li F;Liu X;Zhang W;Huang W
通讯作者:Huang W
DOI:10.1016/j.ijleo.2020.165128
发表时间:2020
期刊:Optik
影响因子:--
作者:Quannu Yang;Xinhao Yang;Qianling Zhang;Yunbo Wang;Han Song;Furong Huang
通讯作者:Furong Huang
DOI:10.1016/j.ijleo.2021.166485
发表时间:2021-03
期刊:Optik
影响因子:3.1
作者:Chuanmei Yang;Peiwen Guang;Li Li-Li;Han Song;Furong Huang;Yuanpeng Li;Lihu Wang;Junhui Hu
通讯作者:Chuanmei Yang;Peiwen Guang;Li Li-Li;Han Song;Furong Huang;Yuanpeng Li;Lihu Wang;Junhui Hu
DOI:10.1002/jbio.202200251
发表时间:2022-10-11
期刊:JOURNAL OF BIOPHOTONICS
影响因子:2.8
作者:Chen, Jiaze;Ma, Jinfang;Li, Yuanpeng
通讯作者:Li, Yuanpeng
DOI:10.1016/j.ijleo.2019.164052
发表时间:2020-02
期刊:Optik
影响因子:3.1
作者:Xinhao Yang;Yuanpeng Li;Lei Wang;Liqun Li;Liu Guo;Maoxun Yang;Furong Huang;Hongxia Zhao
通讯作者:Xinhao Yang;Yuanpeng Li;Lei Wang;Liqun Li;Liu Guo;Maoxun Yang;Furong Huang;Hongxia Zhao
高光谱视网膜成像结合空谱特征融合与深度学习的阿尔茨海默症早期诊断方法研究
  • 批准号:
    --
  • 项目类别:
    省市级项目
  • 资助金额:
    15.0万元
  • 批准年份:
    2024
  • 负责人:
    黄富荣
  • 依托单位:
国内基金
海外基金