高蠕变抗力共晶高熵合金的非平衡等离子定向凝固及蠕变机制
批准号:
52001051
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
王明亮
依托单位:
学科分类:
金属低维与亚稳材料
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
王明亮
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
针对新一代高推重比航空发动机对高温结构材料越来越高的性能要求,本项目拟构建具有共晶(Heusler+BCC相)与纳米层状沉淀(L21+B2相)复合结构的Ni-Al-Ti-Fe-Cr-Mo共晶高熵合金(EHEA)体系,并提出以能量密度高、束流可设计性强的非平衡等离子束为热源对该体系EHEA进行超高温度梯度快速定向凝固,使其兼具优异的室温断裂韧性和超高的高温蠕变抗力。在传统分析技术的基础上,借助三维原子探针、高分辨透射电镜、同步辐射硬X射线等先进手段对EHEA的微结构进行研究,结合理论计算,归纳总结该类EHEA的形成规律,探明实现EHEA超高温度梯度快速定向凝固的束流特性及凝固工艺参数,阐明EHEA的定向凝固机制。通过分析蠕变过程位错的形成、运动及其与沉淀的相互作用机制,结合应力指数计算,揭示EHEA高温蠕变机制,并阐明EHEA的强韧化机理,为EHEA在高温结构领域的工业化应用奠定理论基础。
英文摘要
In view of the increasing performance requirements for the high-temperature structural materials of the new generation high thrust weight ratio aeroengine, a Ni-Al-Ti-Fe-Cr-Mo eutectic high-entropy alloy (EHEA) system with a composite structure consisted of eutectic phases (Heusler + disordered BCC) and hierarchical nanoprecipitates (L21 + B2) is constructed in this project. And ultra-high temperature gradient rapid directional solidification for the EHEA is performed by non-equilibrium plasma beam with high energy density and good beam designability. As a result, the EHEA with excellent room temperature fracture toughness and high-temperature creep resistance is achieved. On the basis of the traditional research technique with the aid of three dimensional atom probe tomography, high resolution transmission electron microscope, synchrotron radiation hard X-ray and such advanced analysis methods to study the microstructures of the EHEA, and combing with the theoretical calculation, so as to summarize the formation law of the EHEA system, ascertain the beam characteristics and solidification parameters for the realization of the ultra-high temperature gradient rapid directional solidification of the EHEA, and clarify the directional solidification mechanisms of the EHEA. By analyzing the mechanisms of the formation and movement of dislocations, interaction between dislocations and precipitates during creep deformation as well as the calculation of stress exponent, to reveal the high-temperature creep mechanisms, and clarify the strength-toughening mechanisms of the EHEA. The research results will lay the theoretical foundation for the industrial application of the EHEA in the high temperature structural material fields.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.addma.2023.103522
发表时间:2023-03
期刊:Additive Manufacturing
影响因子:11
作者:A. Amar;Mingliang Wang;Lingkun Zhang;Jin-Feng Li;Liufei Huang;Hongwei Yan;Yongan Zhang;
通讯作者:A. Amar;Mingliang Wang;Lingkun Zhang;Jin-Feng Li;Liufei Huang;Hongwei Yan;Yongan Zhang;
DOI:10.1016/j.msea.2022.144293
发表时间:2022-11
期刊:Materials Science and Engineering: A
影响因子:--
作者:Dingfeng Xu;Haitao Zhang;Mingliang Wang;Yiping Lu;Xiaohu Chen;Zheng Ren
通讯作者:Dingfeng Xu;Haitao Zhang;Mingliang Wang;Yiping Lu;Xiaohu Chen;Zheng Ren
DOI:10.1007/s40843-022-2171-5
发表时间:2022-09
期刊:Science China Materials
影响因子:--
作者:Jiacheng Duan;Mingliang Wang;R. Huang;Junwei Miao;Yiping Lu;Tongmin Wang;Tingju Li
通讯作者:Jiacheng Duan;Mingliang Wang;R. Huang;Junwei Miao;Yiping Lu;Tongmin Wang;Tingju Li
DOI:10.1016/j.matchar.2021.111449
发表时间:2021-09
期刊:Materials Characterization
影响因子:4.7
作者:Xin Lin;Mingliang Wang;Guangyu Ren;Dongxu Qiao;Yiping Lu;Tongmin Wang;Tingju Li
通讯作者:Xin Lin;Mingliang Wang;Guangyu Ren;Dongxu Qiao;Yiping Lu;Tongmin Wang;Tingju Li
DOI:10.1016/j.scriptamat.2021.114132
发表时间:2021-11
期刊:Scripta Materialia
影响因子:6
作者:Mingliang Wang;Yiping Lu;Tongmin Wang;Chuan Zhang;Z. Cao;Tingju Li;P. Liaw
通讯作者:Mingliang Wang;Yiping Lu;Tongmin Wang;Chuan Zhang;Z. Cao;Tingju Li;P. Liaw
国内基金
海外基金















{{item.name}}会员


