非交错链环和棋盘可着色虚拟链环的Jones多项式的若干性质
结题报告
批准号:
12001464
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
邓青英
依托单位:
学科分类:
图论及其应用
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
邓青英
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
组合纽结论是通过平面投影图来研究纽结和链环的理论。研究图和链环之间的联系是一个有趣的课题,最常见的联系是图的图多项式与链环的链环多项式之间的联系。比如,交错链环的Jones多项式(由V. F. R. Jones提出,Jones由于该项工作在1990年国际数学家大会上荣获Fields奖。)是Tutte多项式的特殊情形。本项目主要研究非交错链环和棋盘可着色虚拟链环Jones多项式的系数,并探索虚拟链环的Jones多项式以及更广的一些多项式(比如,广义Yamada多项式)的系数、次数和跨度以及相关问题。这些纽结多项式与图论中的图的Tutte多项式以及带子图的Bollobás-Riordan多项式有密切关联。拟从图和图多项式入手,综合运用图论和组合纽结论中的方法和技巧,期望得到Jones多项式系数的几何解释。
英文摘要
The combinatorial knot theory is the theory of studying knots and links by using diagrams in plane. It is an interesting subject to study the relationship between graphs and links. The relationship between graph polynomials of graphs and link polynomials of links is the most common. For example, the Jones polynomial (which was proposed by V. F. R. Jones. Jones won the Fields Award at the 1990 International Conference of Mathematicians for this work.) of an alternating link is a specialization of the Tutte polynomial. In this project, we will mainly focus on the coefficients of Jones polynomials of non-alternating links and checkerboard colorable virtual links. We explore the coefficients, degrees and spans of Jones polynomial and some more general polynomials (such as generalized Yamada polynomial) of virtual links and some related problems. These knot polynomials are closely related to the Tutte polynomial of graphs and the Bollobás-Riordan polynomial of ribbon graphs in graph theory. We intend to start from the graphs and graph polynomials, combine the methods and techniques in graph theory and combinatorial knot theory, and expect to obtain the geometric interpretation of the coefficients of Jones polynomial.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
One conjecture on cut points of virtual links and the arrow polynomial of twisted links
虚拟链路割点与扭曲链路箭头多项式的一种猜想
DOI:10.1142/s0218216522500663
发表时间:2021
期刊:Journal of knot theory and its ramifications
影响因子:0.5
作者:Qingying Deng
通讯作者:Qingying Deng
DOI:10.1016/j.amc.2022.127773
发表时间:2023-04
期刊:Appl. Math. Comput.
影响因子:--
作者:Xiao-Sheng Cheng;Qingying Deng;Y. Diao
通讯作者:Xiao-Sheng Cheng;Qingying Deng;Y. Diao
DOI:10.1142/s0218216523500086
发表时间:2021
期刊:Journal of Knot Theory and Its Ramifications
影响因子:0.5
作者:Shudan Xue;Qingying Deng
通讯作者:Qingying Deng
DOI:10.1142/s021821652150053x
发表时间:2020-02
期刊:Journal of Knot Theory and Its Ramifications
影响因子:0.5
作者:Qingying Deng;Xian'an Jin;L. Kauffman
通讯作者:Qingying Deng;Xian'an Jin;L. Kauffman
DOI:--
发表时间:2023
期刊:Discrete Applied Mathematics
影响因子:--
作者:Xiaojun Zhao;Qingying Deng;Zhiyi Wang
通讯作者:Zhiyi Wang
Twisted 链环及其不变量
  • 批准号:
    2022JJ40418
  • 项目类别:
    省市级项目
  • 资助金额:
    0.0万元
  • 批准年份:
    2022
  • 负责人:
    邓青英
  • 依托单位:
国内基金
海外基金