零和理论和Krull monoid的算术性质
批准号:
12001331
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
钟庆海
依托单位:
学科分类:
组合数学
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
钟庆海
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
本项目的研究内容属于组合数论和分解理论的范畴。令G为一个有限Abel群,令S为群G上的一个有限序列,如果S的所有项之和为零,则称S为零和序列。典型的零和问题研究的是在什么样的条件下,给定的序列中含有非空的满足特定要求的零和子列。本项目拟研究组合零和常数cross number和tiny零和序列相关的问题。在19世纪,人们发现代数整数环并不是唯一分解的,从那时起人们开始关注如何刻画代数整数环的非唯一分解的现象。如果我们以B(G)来记群G上的所有零和序列构成的集合,以序列的拼接作为B(G)上的运算,那B(G)则构成了一个半群。通过建立Krull monoid H(如代数整数环)到B(G)的传递同态,研究H的非唯一分解现象可以通过研究B(G)上的算术零和常数来实现,由于这一理论主要使用组合数论的工具和方法,通常称为组合分解理论。本项目拟研究算术零和常数中与分解长度和分解距离等相关的问题。
英文摘要
The proposed project lies in the combinatorial number theory and the factorization theory. Let G be a finite abelian group and let S be a finite sequence over G. If the sum of all the terms of S equals zero, then S is called a zero-sum sequence over G. A typical zero-sum problem studies conditions which ensure that given sequences have non-empty zero-sum subsequences with prescribed properties.In this project, we will study the direct and inverse problems concerning the cross number and tiny zero-sum sequences..It was an important observation of mathematicians of the 19th century that in general the ring of integers of an algebraic number field is not factorial. Since then, people began to characterize the various phenomena of non-uniqueness of factorizations of the ring of integers. Let B(G) denote the set of all zero-sum sequences over G and let the concatenation be the operation of B(G). Then B(G) is a semigroup. To study the phenomena of non-uniqueness of a Krull monoid H (for example, the ring of integers), we could study the arithmetic of B(G) by building a transfer homomorphism from H to B(G). The study of the factorizations of B(G) is always called combinatorial factorization theory, since the tools and the methods are mainly from combinatorial number theory. In this project, we will study the arithmetic zero-sum invariants concerning the sets of lengths and the set of distances and others.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1142/s0219498822500852
发表时间:2020-12
期刊:
影响因子:--
作者:Yuanlin Li;Qinghai Zhong
通讯作者:Yuanlin Li;Qinghai Zhong
DOI:10.1007/s10998-022-00483-5
发表时间:2020-12
期刊:Periodica Mathematica Hungarica
影响因子:0.8
作者:Victor Fadinger;Qinghai Zhong
通讯作者:Victor Fadinger;Qinghai Zhong
DOI:10.1007/s10474-022-01270-x
发表时间:2022-02
期刊:Acta Mathematica Hungarica
影响因子:0.9
作者:A. Geroldinger;F. Halter-Koch;Qinghai Zhong
通讯作者:A. Geroldinger;F. Halter-Koch;Qinghai Zhong
DOI:--
发表时间:2021-01
期刊:
影响因子:--
作者:A. Geroldinger;Qinghai Zhong
通讯作者:A. Geroldinger;Qinghai Zhong
DOI:10.1016/j.jnt.2021.08.011
发表时间:2021-10
期刊:Journal of Number Theory
影响因子:0.7
作者:K. Zhao;Qinghai Zhong
通讯作者:K. Zhao;Qinghai Zhong
国内基金
海外基金















{{item.name}}会员


