大数据驱动的区域交通事故建模与影响机理研究
批准号:
52002179
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
包杰
依托单位:
学科分类:
交通安全与环境
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
包杰
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
近年来,区域交通事故建模成为道路交通安全的热点研究之一,旨在将影响交通小区安全水平的各因素纳入交通规划阶段考虑,实现从源头上降低交通事故风险。已有研究对区域交通曝光变量的度量不够准确,对影响变量的复杂时空耦合关系考虑不充分,导致现有模型的预测精度和可移植性较差,无法深入揭示区域事故风险的影响机理。对此,本项目拟从大数据中提取区域交通曝光信息,归纳大数据驱动的出行特征辨识和融合方法;构建基于深度学习的区域交通事故模型,揭示区域事故风险的时空演化机理和传播规律;解析区域事故风险时空演化的分层致因,归纳区域交通事故风险的前兆特征;建立路网特征–交通出行特征–区域事故风险之间的关联机制,解析不同交通出行特征和道路网络设计参数对区域事故风险的影响机理,为复杂交通环境下的区域安全调控和道路优化设计提供理论基础。通过研究,形成大数据驱动的区域交通事故建模理论和方法,为保障道路安全、高效运行提供科学支撑。
英文摘要
Recently, zonal traffic crash modeling has become one of the hot research topics in the field of road traffic safety. Zonal traffic crash modeling aims to incorporate various factors of zonal safety levels into traffic planning stage, which can potentially reduce crash risk from the source. Existing studies did not evaluate zonal traffic exposure accurately and neglected the complex spatiotemporal correlations among influencing variables, resulting in lower model prediction accuracy and poor transferability. Thus, previous zonal crash models cannot better reveal the influence mechanism of zonal crash risk. More specifically, the proposed project will study the following research tasks: (1) to extract zonal traffic exposure information from big data sources, and to explore big data-driven methods for zonal travel pattern mining and fusion; (2) to develop zonal crash risk prediction models on the basis of deep learning methods to reveal the spatiotemporal evolution and propagation mechanisms of zonal crash risk; (3) to explore the multi-level contributing factors of zonal crash risk, and to identify the crash precursors of zonal traffic crashes; (4) to establish the relationship between the road network pattern, the travel pattern and zonal crash risk. Particular attention will be given to understand to what extent different travel patterns and road network characteristics affect zonal crash risk. The related findings will provide the fundamental basis for zonal safety regulation and optimized road network design under complex traffic environment. Based on the research results of this project, methods and guidelines will be developed to build big data-driven zonal crash models to improve the operation and safety performance of road network.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3390/aerospace10050453
发表时间:2023-05
期刊:Aerospace
影响因子:2.6
作者:Jiawei Kang;Shangwen Yang;Xiaoxuan Shan;J. Bao;Zhao Yang
通讯作者:Jiawei Kang;Shangwen Yang;Xiaoxuan Shan;J. Bao;Zhao Yang
DOI:10.1016/j.eswa.2022.118475
发表时间:2022
期刊:Expert Systems With Applications
影响因子:--
作者:Jie Bao;Jiawei Kang;Zhao Yang;Xinyuan Chen
通讯作者:Xinyuan Chen
DOI:10.1080/03081060.2023.2166510
发表时间:2023-01
期刊:Transportation Planning and Technology
影响因子:1.6
作者:J. Bao;Zongbo Wang;Zhao Yang;Xiaoxuan Shan
通讯作者:J. Bao;Zongbo Wang;Zhao Yang;Xiaoxuan Shan
Zone-level traffic crash analysis with incorporated multi-sourced traffic exposure variables using Bayesian spatial model
使用贝叶斯空间模型结合多源交通暴露变量进行区域级交通事故分析
DOI:10.1080/19439962.2022.2164815
发表时间:2023-01
期刊:Journal of Transportation Safety & Security
影响因子:2.6
作者:Hao Zhang;Jie Bao;Qiong Hong;Lv Chang;Wei Yin
通讯作者:Wei Yin
DOI:10.1016/j.jtrangeo.2021.103118
发表时间:2021-06-11
期刊:JOURNAL OF TRANSPORT GEOGRAPHY
影响因子:6.1
作者:Bao, Jie;Yang, Zhao;Shi, Xiaomeng
通讯作者:Shi, Xiaomeng
国内基金
海外基金















{{item.name}}会员


