基于影像组学的肝癌术前病理分级评价方法研究
结题报告
批准号:
81971686
项目类别:
面上项目
资助金额:
55.0 万元
负责人:
梁文杰
依托单位:
学科分类:
医学图像数据处理、分析与可视化
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
梁文杰
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
肝癌的术前病理组织学分级评价是函待解决的临床难题,肝癌的分化程度影响患者的手术预后和肝移植策略的选择。本课题组前期研究及文献发现:基于影像数据的影像组学被证实可用于肿瘤的各种表型的评价,且与肿瘤的基因、分子分型密切相关;近期,本课题组在研究中发现影像组学特征与肿瘤的病理分级密切相关,提示影像组学可以用来评估肝癌组织分化,并可能与肝癌相关基因/蛋白质的表达相关。据此,本项目拟通过肝癌影像数据研究纹理特征、梯度特征和深度特征提取方法;基于特征过滤和包裹法选择最佳的特征子集;构建集成学习影像组学模型用于术前评估肝癌病理分级。同时,本项目将基于稀疏匹配的多组学数据关联分析方法开展影像组学特征与差异基因/蛋白质的关联分析,揭示肝癌分化相关影像组学特征背后的生物学基础。本项目的开展将为肝癌患者提供术前病理分级信息,指导治疗策略,也为影像组学研究提供重要的理论基础。
英文摘要
Preoperative evaluation of hepatocellular carcinoma histopathological grading is a clinical problem that requires a solution. The degree of differentiation of hepatocellular carcinoma will influence a patient’s surgical prognosis and the choice of liver transplantation strategy. Previous studies by our group and others have found that radiomics-based imaging data are useful for evaluation of tumors with various phenotypes and radiomics results correlate closely with those based on tumor gene and molecular typing. We also previously found that radiomics data are closely associated with tumor pathological grade, suggesting that this methodology could be used to assess hepatocellular carcinoma histological grade, and may be related to the expression of hepatocellular carcinoma-related genes/proteins. Accordingly, in this project we intend to retrospectively collect image data from patients with hepatocellular carcinoma and study extraction methods of texture features, gradient features and deep feature. The best feature subsets will be selected based on feature filtering and the wrapper method, and an Ensemble Learning radiomics model constructed for preoperative evaluation of hepatocellular carcinoma histological grade. Simultaneously, we will analyze the associations between radiomics features and differentially expressed genes/proteins related to hepatocellular carcinoma differentiation, using the sparse matching multi-omics data association analysis method, to reveal the biological characteristics underlying radiomics features. This project will provide preoperative pathological grade information for patients with hepatocellular carcinoma, guide treatment strategies, and provide an important theoretical basis for the study of radiomics.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1186/s12885-022-10273-4
发表时间:2022-11-29
期刊:BMC cancer
影响因子:3.8
作者:
通讯作者:
DOI:10.1002/ctm2.111
发表时间:2020-06-21
期刊:CLINICAL AND TRANSLATIONAL MEDICINE
影响因子:10.6
作者:Zhang, Xiuming;Ruan, Shijian;Liang, Tingbo
通讯作者:Liang, Tingbo
DOI:--
发表时间:2021
期刊:中华消化外科杂志
影响因子:--
作者:梁文杰;田吴炜;王聿必琢;夏靖雯;阮世健;邵嘉源;傅之昊;卢娜;丁勇;肖文波;白雪莉
通讯作者:白雪莉
DOI:--
发表时间:2021
期刊:Clinical and Translational Medicine
影响因子:10.6
作者:Ding Yong;Ruan Shijian;Wang Yubizhuo;Shao Jiayuan;Sun Rui;Tian Wuwei;Xiang Nan;Ge Weigang;Zhang Xiuming;Su Kunkai;Xia Jingwen;Huang Qiang;Liu Weihai;Sun Qinxue;Dong Haibo;Farias Mylène C Q;Guo Tiannan;Krylov Andrey S;Liang Wenjie;Xiao Wenbo;Liang Tingbo
通讯作者:Liang Tingbo
基于多模态数据构建肝癌预后人工智能预测 模型及前瞻性 TACE 治疗验证研究
  • 批准号:
    HDMZ24H160002
  • 项目类别:
    省市级项目
  • 资助金额:
    0.0万元
  • 批准年份:
    2024
  • 负责人:
    梁文杰
  • 依托单位:
国内基金
海外基金