基于星地协同的水文传感网时空覆盖优化布局方法研究

批准号:
41701453
项目类别:
青年科学基金项目
资助金额:
25.0 万元
负责人:
王珂
依托单位:
学科分类:
D0114.地理信息学
结题年份:
2020
批准年份:
2017
项目状态:
已结题
项目参与者:
胡楚丽、朱彦虎、刘洋、彭宣童、李海霞
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
地面观测和卫星遥感作为水文监测的两种主要手段,其覆盖范围分别呈空间不连续和时间不连续的特点。如何协同星地传感器进行联合观测,充分发挥卫星和地面站的时空覆盖优势,是提高水文监测能力和观测资源利用效率的重要科学问题。本项目以服务于水文监测的星地传感器覆盖能力为切入点,建立面向多维度水文观测需求的星地传感器覆盖能力表征模式;基于星地传感器覆盖能力的时空互补和增强,构建多目标星地传感器时空最大覆盖模型;通过将水文站选址和卫星配置的无限搜索空间转换为有限可行解集,提出连续时空条件下的星地联合覆盖问题高效求解方法;综合上述模型与方法,设计并开发面向长江上游金沙江流域水文观测的星地传感器优化布局原型系统,提出针对日常和应急监测的星地协同水文观测最优布局策略。本项目的研究成果有利于提高对水文传感网的时空连续覆盖能力并实现有限观测资源的最优配置,能够为天地一体化水文传感网的规划与设计提供决策支持。
英文摘要
The two major hydrological monitoring techniques, ground-based measurements and remote sensing, have distinct coverage characteristics. The coverage of ground station is continuous in time but discontinuous in space, whereas satellite coverage is continuous in space but discontinuous in time. Therefore, how to cooperate satellite sensors with ground-based sensors through mutual complementation of their coverage to improve the sensing capability and utilization rate of limited resources is an important scientific issue and presents a great challenge. This project takes coverage capability as the breakthrough point and designs a multidimensional representation mode of the coverage capabilities of space-borne and ground-based sensors oriented to hydrological monitoring. Then, we formulate a multi-objective spatio-temporal maximal covering location model based on the spatio-temporal complementation and enhancement of the coverage capabilities of space-ground sensors. By transforming the infinite search space of satellite planning and hydrological station siting to a finite dominant feasible solution set, a method for solving the spatio-temporal continuous covering problem can be proposed. To test the availability and performance of the proposed optimization models and methods, we will develop an optimal deployment prototype system which is applied in the Jinsha River Basin. The space-ground collaborative deployments oriented to rainfall monitoring and streamflow monitoring will be selected as two case studies. Several optimal deployment strategies of space-borne sensors and ground-based stations will also be analyzed in the daily monitoring and emergency monitoring scenarios. This research is expected to provide an effective method for the space-ground collaborative deployment optimization, which will be useful to improve the spatio-temporal continuous coverage capability for hydrological monitoring and to achieve the optimized configuration of limited observation resources. The research findings can provide decision support for the space-ground integrated hydrological sensor web planning and design.
地面观测和卫星遥感作为水文监测的两种主要手段,其覆盖范围分别呈空间不连续和时间不连续的特点。如何协同星地传感器进行联合观测,充分发挥卫星和地面站的时空覆盖优势,是提高水文综合监测能力和有限观测资源利用效率的重要科学问题。本项目针对星地传感器水文观测的协同规划需求:(一)提出了点观测、线观测和面观测三种类型的水文观测覆盖能力表征模式,建立了星地多传感器观测能力信息关联模型,定义了互补、增强、竞争、协作等四类传感器关联模式,实现了面向多维度水文观测需求的星地传感器覆盖能力的时空关联表征与计算;(二)构建了面向单要素观测任务的星地协同观测时空互补覆盖模型TMCLP-PC、面向多要素复杂观测任务的星地协同观测时空增强覆盖模型SGMC-MP和顾及多目标的水文站网优化选址模型,通过引入部分覆盖判定、卫星动态侧摆等复杂约束条件,以及综合考虑空间覆盖、测站可达性和分布均匀性的复合加权模式,实现了基于覆盖能力时空互补与增强的星地传感器协同规划;(三)提出了连续时空需求条件下的星地协同规划布局问题求解方法,基于时空离散化思想设计了星地传感器规划的有限控制解集,将连续的无限搜索空间转换为离散的有限搜索空间,并设计了一种基于时空融合交叉的改进型遗传算法ST-swap GA,实现了对星地覆盖问题的高效求解;(四)开发了面向流域水文观测的星地传感器优化布局原型系统GeoSensorNodeOptimization,实现了水文传感器资源注册与查询、星地传感器覆盖能力计算、星地协同覆盖建模与求解、布局结果可视化等功能;(五)在长江中上游流域开展了一系列星地协同水文观测布局实验,结果表明本项目所提出的方法系统能够有效提升水文传感网的时空连续覆盖能力,有利于实现星地观测资源的协同规划与最优配置,能够为天地一体化水文传感网设计提供决策支持,同时也有利于实现时空优化技术在水文综合观测领域的多学科交叉应用。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
A Collaborative Planning Method of Space-Ground Sensor Network Coverage Optimization for Multiparameter Observation Tasks
多参数观测任务的天地传感器网络覆盖优化协同规划方法
DOI:10.1109/jsen.2020.3048035
发表时间:2021-03
期刊:IEEE Sensors Journal
影响因子:4.3
作者:Wang Ke;Wu Qianqian;Peng Yuling;Hu Chuli;Chen Nengcheng
通讯作者:Chen Nengcheng
An Observation Capability Information Association Model for Multisensor Observation Integration Management: A Flood Observation Use Case in the Yangtze River Basin
多传感器观测集成管理的观测能力信息关联模型:长江流域洪水观测用例
DOI:10.1109/jsen.2019.2933655
发表时间:2019-12
期刊:IEEE Sensors Journal
影响因子:4.3
作者:Chuli Hu;Lu Tian;Jie Li;Ke Wang;Nengcheng Chen
通讯作者:Nengcheng Chen
DOI:10.3969/j.issn.1672-4623.2020.01.016
发表时间:2020
期刊:地理空间信息
影响因子:--
作者:杨佳;王梦晓;王珂
通讯作者:王珂
An Observation Task Chain Representation Model for Disaster Process-Oriented Remote Sensing Satellite Sensor Planning: A Flood Water Monitoring Application
面向灾害过程的遥感卫星传感器规划的观测任务链表示模型:洪水监测应用
DOI:10.3390/rs10030375
发表时间:2018-03
期刊:Remote Sensing
影响因子:5
作者:Yang Chao;Luo Jin;Hu Chuli;Tian Lu;Li Jie;Wang Ke
通讯作者:Wang Ke
SOCO-Field: observation capability representation for GeoTask-oriented multi-sensor planning cognition
SOCO-Field:面向GeoTask的多传感器规划认知的观测能力表示
DOI:10.1080/13658816.2019.1655755
发表时间:2019-08-24
期刊:INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
影响因子:5.7
作者:Hu,Chuli;Li,Jie;Chen,Nengcheng
通讯作者:Chen,Nengcheng
国内基金
海外基金
