基于合流Heun函数的角向Teukolsky方程精确解的研究
结题报告
批准号:
11975196
项目类别:
面上项目
资助金额:
60.0 万元
负责人:
陈昌远
依托单位:
学科分类:
物理中的数学与计算方法
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
陈昌远
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
角向Teukolsky方程在黑洞的引力自作用和准正模等问题的研究中有着重要的应用,目前只能逐级近似求解,影响了人们对黑洞问题的认识。本项目将提出一种获得其精确解的全新方案。运用不同形式的函数变换和变量代换方法,把具有自然边界条件且符合施图姆-刘维尔边值问题的角向Teukolsky方程转化为合流Heun微分方程。根据合流Heun微分方程及其解析解的特性,通过寻找同一本征态的线性相关的两个本征函数构造朗斯基行列式,来确定本征值必须满足的方程。运用Maple软件编程求解朗斯基行列式给出精确的本征值,根据相关参数和本征值进行运算,给出精确的正交归一化的本征函数,绘出在各种量子态下的角分布。最后通过数值计算和作图方法验证它们为角向Teukolsky方程的精确解。本研究成果不仅能够丰富和发展黑洞物理的研究,还可以拓展到电磁场散射理论、原子与分子物理等实际问题中,也可为检验有关实验结果提供理论依据。
英文摘要
The angular Teukolsky equation has played an important role in black holes for the gravitational self-force (GSF), quasi-normal modes (QNM ), radiation, phase transition and others. Unfortunately, the previously approximate solutions have greatly affected our understanding of black holes. The main purpose of this project is to propose an entirely new scheme in order to obtain its exact solutions. First, the angular Teukolsky equation with natural boundary conditions which satisfying the Sturm-Liouville boundary value problem will be transformed to a confluent Heun differential equation by using suitable function transformations and variable substitutions. And then, in terms of the characteristics of the confluent Heun differential equation and its corresponding analytical solutions, two linearly-dependent eigenfunctions which correspond to the same eigenstate are used to construct the Wronskian determinant and then to decide the energy equation of eigenvalues. With the aid of Maple software, we solve the Wronskian determinant and thus obtain its exact eigenvalues. The orthogonal normalized eigenfunctions can be achieved precisely by substituting the related parameters and obtained eigenvalues into non-normalized eigenfunctions. We shall also illustrate the angular distributions for various quantum states. The solutions which are to be verified by numerical calculation and mapping method are shown that they are indeed the exact solutions of the angular Teukolsky equation. The results to be obtained in this project not only enrich the study in black hole physics, but also can be extended to other kinds of practical problems such as electromagnetic field scattering theory, atomic and molecular physics. Moreover, it can also provide theoretical basis for examining relevant experimental results.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.rinp.2022.105330
发表时间:2022
期刊:Results in Physics
影响因子:5.3
作者:Chang-Yuan Chen;Fa-Lin Lu;Guo-Hua Sun;Xiao-Hua Wang;Yuan You;Dong-Sheng Sun;Shi-Hai Dong
通讯作者:Shi-Hai Dong
DOI:10.1016/j.physleta.2020.126480
发表时间:2020-07
期刊:Physics Letters A
影响因子:2.6
作者:Guo-Hua Sun;Chang-Yuan Chen;H. Taud;C. Yáñez-Márquez;S. Dong
通讯作者:Guo-Hua Sun;Chang-Yuan Chen;H. Taud;C. Yáñez-Márquez;S. Dong
DOI:10.7498/aps.70.20210214
发表时间:2021
期刊:物理学报
影响因子:--
作者:陈昌远;孙国华;王晓华;孙东升;尤源;陆法林;董世海
通讯作者:董世海
DOI:10.1088/1402-4896/accda1
发表时间:2023
期刊:Physica Scripta
影响因子:--
作者:Xiao-Hua Wang;Chang-Yuan Chen;Yuan You;Dong-Sheng Sun;Fa-Lin Lu;Shi-Hai Dong
通讯作者:Shi-Hai Dong
DOI:10.1016/j.rinp.2021.104115
发表时间:2020-04
期刊:arXiv: General Relativity and Quantum Cosmology
影响因子:--
作者:Chang-Yuan Chen;Y. You;Xiao‐Hua Wang;F. Lu;Dong-Sheng Sun;S. Dong
通讯作者:Chang-Yuan Chen;Y. You;Xiao‐Hua Wang;F. Lu;Dong-Sheng Sun;S. Dong
基于函数分析方法的环形势场的精确解
  • 批准号:
    11275165
  • 项目类别:
    面上项目
  • 资助金额:
    68.0万元
  • 批准年份:
    2012
  • 负责人:
    陈昌远
  • 依托单位:
国内基金
海外基金