基于DCT域学习的视频图像修复算法研究
结题报告
批准号:
62001146
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
郑博仑
依托单位:
学科分类:
图像信息处理
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
郑博仑
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
针对超高清网络多媒体系统应用,遇到定码率模式下的视频压缩失真复原问题,以及视频压缩失真复原与超分辨重建割裂问题,拟通过压缩失真量化模型,DCT域学习模型,及多任务算法框架三个方面展开研究解决。首先,针对定码率模式下压缩质量的非均匀时空分布特性,基于编码信息对图像块进行重构,重点研究基于DCT域量化损失及预测编码准确性建模的压缩失真量化算法,及基于CNN的压缩失真评估算法。其次,基于DCT变换及反变换的线性可微特性,重点研究基于深度卷积神经网络与无监督学习的DCT域残差自适应估计方法。最后,基于视频图像压缩失真复原与超分辨重建的共性特点,研究灵活可变、低延迟、可流水的多任务视频图像修复算法框架,分别从效果最优与效率最优两个方面研究最优解决方案。最终目标是构建集视频压缩失真复原与超分辨率重建为一体的多任务视频修复算法框架,为超高清网络多媒体系统的发展提供核心技术支撑。
英文摘要
There are several problems for the application of UHD network-based multimedia system, including the video compression artifact reduction brought by fixed bitrate encoding, and the separation of video compression artifact reduction and super resolution. This project will be carried out on three aspects: compression artifact quantization model, DCT domain learning model, and multi-task algorithm architecture, to resolve these problems. Firstly, based on the nonhomogeneous distribution of the compressing quality brought by the fixed bitrate encoding, reconstruct encoded image with encoding information, then the research is focusing on DCT-domain quantization loss modeling and predictive encoding accuracy modeling based compression artifact quantization algorithm, and CNN-based compression artifact estimation algorithm. Secondly, based on the linearity and differentiability of DCT and inverse DCT, the research is focusing on deep convolutional neural network based and unsupervised learning based adaptive DCT-domain residual estimation algorithm. Finally, based on the common characteristics of video compression artifact reduction and super resolution, we focus on constructing a flexible, low-delay, and easy to be pipelined multi-task oriented video restoration algorithm architecture, and studying the optimal solutions respectively for effect oriented and efficiency oriented applications. The ultimate goal is to develop a multi-task oriented video restoration algorithm architecture for both compression artifact reduction and super resolution, providing the core technology support for the development of UHD network-based multimedia system.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.jvcir.2023.104030
发表时间:2023-12
期刊:J. Vis. Commun. Image Represent.
影响因子:--
作者:Wei Wu;Daoquan Huang;Yang Yao;Zhuonan Shen;Hua Zhang;Chenggang Yan;Bolun Zheng
通讯作者:Wei Wu;Daoquan Huang;Yang Yao;Zhuonan Shen;Hua Zhang;Chenggang Yan;Bolun Zheng
DOI:10.1109/tcsvt.2021.3123621
发表时间:2022-07
期刊:IEEE Transactions on Circuits and Systems for Video Technology
影响因子:8.4
作者:Heng Zhao;Bolun Zheng;Shanxin Yuan;Hua Zhang;C. Yan;Liang Li;G. Slabaugh
通讯作者:Heng Zhao;Bolun Zheng;Shanxin Yuan;Hua Zhang;C. Yan;Liang Li;G. Slabaugh
DOI:10.1109/tpami.2021.3115139
发表时间:2021-09
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence
影响因子:23.6
作者:Bolun Zheng;Shanxin Yuan;C. Yan;Xiang Tian;Jiyong Zhang;Yaoqi Sun;Lin Liu;A. Leonardis;G. Slaba
通讯作者:Bolun Zheng;Shanxin Yuan;C. Yan;Xiang Tian;Jiyong Zhang;Yaoqi Sun;Lin Liu;A. Leonardis;G. Slaba
DOI:--
发表时间:2022
期刊:IEEE Transactions on Computational Imaging
影响因子:5.4
作者:Bolun Zheng;Quan Chen;Shanxin Yuan;Xiaofei Zhou;Hua Zhang;Jiyong Zhang;Chenggang Yan;Gregory Slabaugh
通讯作者:Gregory Slabaugh
DOI:10.1007/s00521-023-08852-y
发表时间:2023-07-26
期刊:NEURAL COMPUTING & APPLICATIONS
影响因子:6
作者:Chen,Quan;Zheng,Bolun;Yuan,Shanxin
通讯作者:Yuan,Shanxin
融合时空模型与先验的运动场景连续高动态成像方法研究
  • 批准号:
    62371175
  • 项目类别:
    面上项目
  • 资助金额:
    50万元
  • 批准年份:
    2023
  • 负责人:
    郑博仑
  • 依托单位:
国内基金
海外基金