最优线性码和低差分函数的构造研究
结题报告
批准号:
12001175
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
王小强
依托单位:
学科分类:
安全中的数学理论
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
王小强
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
构造有限域上最优线性码和低差分函数一直是编码学和密码学研究的重要内容之一。从有限域上多项式函数构造的线性码,其码的性质往往与多项式函数的差分等密码学性质密切相关。本项目拟综合运用代数学、组合学以及有限域理论来研究有限域上最优线性码和低差分函数的构造问题。具体研究问题如下:(1) 研究在b-距离意义下最优线性码的设计与分析,包括b-距离较大的MDS b-symbol线性码的构造,较少b-重量的线性码的构造,线性码的b-距离达到Hamming距离b倍的充要条件的刻画等。(2) 提出新的基于定义集的线性码构造方法,期望获得具有高码率的最优线性码,并对构造的线性码进行Hamming重量分析。(3) 利用有限域上一些特殊代数曲线来构造低差分函数,并研究它们的差分谱,同时讨论运用这些低差分函数来设计性能优良的线性码。本项目研究成果可为数字信息传输和存储的差错控制提供理论支持,并丰富纠错码理论。
英文摘要
The construction of optimal linear codes and low differential uniformity functions over finite fields is an important research field in coding theory and cryptography. Properties of linear codes constructed from polynomial functions over finite fields are often closely related to the differential uniformity and other cryptographic properties of polynomial functions. In this proposal, we will concentrate our study on constructions of linear codes and low differential uniformity functions over finite fields by using the theory of algebra, combinatorics and the theory of finite fields. The main contents are as follows: (1) We study the design and analysis of optimal linear codes under the b-distance, including the constructions of MDS b-symbol linear codes with large b-distance, the constructions of linear codes with a few b-weight. We also give the characterization of the necessary and sufficient conditions that the b-distance of linear codes are as much as b times of their Hamming distance. (2) A new method of constructing linear codes based on defining sets will be proposed. Our goal is to obtain optimal linear codes with high bit rate; furthermore, the Hamming weight structure of these codes will be analyzed. (3) Some special algebraic curves over finite fields will be used to construct low differential uniformity functions, and their differential spectrums are studied. Moreover, linear codes with good parameters are designed by using these low differential functions. The research results of this proposal can provide theoretical support for the error control of digital information transmission and storage, and also can enrich the theory of error correcting codes.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1109/tit.2021.3088146
发表时间:2021-01
期刊:IEEE Transactions on Information Theory
影响因子:2.5
作者:Xiaoqiang Wang;Dabin Zheng;C. Ding
通讯作者:Xiaoqiang Wang;Dabin Zheng;C. Ding
DOI:10.4208/cmr.2020-0520
发表时间:2020-12
期刊:ArXiv
影响因子:--
作者:Dabin Zheng;Xiaoqiang Wang;Yayao Li;Mu Yuan
通讯作者:Dabin Zheng;Xiaoqiang Wang;Yayao Li;Mu Yuan
Strict Half-Singleton Bound, Strict Direct Upper Bound for Linear Insertion-Deletion Codes and Optimal Codes
线性插入删除码和最优码的严格半单例界、严格直接上界
DOI:10.1109/tit.2023.3234967
发表时间:2022
期刊:IEEE Transactions on Information Theory
影响因子:2.5
作者:Qi;Dabin Zheng;Haoyuan Chen;Xiaoqiang Wang
通讯作者:Xiaoqiang Wang
DOI:10.3934/amc.2022062
发表时间:2022
期刊:Adv. Math. Commun.
影响因子:--
作者:Qinqin Ji;Dabin Zheng;Xiaoqiang Wang
通讯作者:Qinqin Ji;Dabin Zheng;Xiaoqiang Wang
DOI:10.1016/j.dam.2022.08.022
发表时间:2021-04
期刊:Discret. Appl. Math.
影响因子:--
作者:Xiaoqiang Wang;Dabin Zheng
通讯作者:Xiaoqiang Wang;Dabin Zheng
国内基金
海外基金