可控降解医用镁基表面LSP/MAO功能化微结构重构及腐蚀疲劳行为评价

批准号:
51775502
项目类别:
面上项目
资助金额:
58.0 万元
负责人:
熊缨
依托单位:
学科分类:
E0504.机械结构强度学
结题年份:
2021
批准年份:
2017
项目状态:
已结题
项目参与者:
胡夏夏、郑晓华、柯云舒、胡强、龚兴华、杨增远
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
可降解镁基材料作为新型人体植入物是医学研究的前沿。如何控制其降解速率及抗腐蚀疲劳方面的研究几乎是空白。本项目采用激光冲击喷丸和微弧氧化复合改性技术,在镁合金表面构建多尺度、多层次、功能化的纳米晶-生物活性陶瓷重构层。在模拟生理体液中进行浸泡、电化学及腐蚀疲劳试验。结合电化学理论及现代微观测试方法,调查LSP/MAO重构层的降解行为,阐明重构层的降解调控机理;采用GA-BP神经网络技术,建立重构层工艺优化/可控降解的计算机仿真模型。分析腐蚀疲劳过程中的力学-电化学效应,探讨LSP/MAO重构层在介质和载荷耦合作用下的失效机制;揭示重构层抗腐蚀和疲劳双重效应的原因。基于累计疲劳损伤理论和断裂力学理论,建立改性镁基材料的腐蚀疲劳寿命预测模型。该研究对新型医用可控降解镁基植入材料的制备和应用技术、镁合金防腐理论和腐蚀疲劳断裂控制的发展产生重要的推动作用。研究成果具有重要学术价值和医学应用前
英文摘要
Biodegradable magnesium-based materials as novel human implants is one of a forefront topic in medical science due to outstanding biocompatibility, excellent mechanical properties, spontaneous degradation, and the density and elastic modulus close to bone tissue. Unfortunately, the degradation rate of magnesium-based materials is too quick in the physiological environment to keep mechanical integrity before the diseased or damaged bone tissue healed, which restricted their clinical application as implants. However, the researches about controlling degradation rate and improving anticorrosion-fatigue of the materials in the physiological environment have seldom been reported. The overall goal in this project is to investigate the degradation process and corrosion fatigue behavior for surface modified Mg alloys through experiment, and to develop a theoretical model predicting corrosion fatigue life. . The main tasks in this project are as follows. . I. Reconstruction of functionalized surface microstructure. Through laser shot peening (LSP) and micro arc oxidation (MAO) technologies a new composite called nano-bioactive ceramic layer covering magnesium is fabricated which has characteristics such as multiscale, multilayer and functionalization. The effect of preparation process on microstructure and properties of the new layer will be investigated. The formation mechanism of the LSP/MAO functional reconstruction layer will be clarified.. II. Controllable degradation of LSP/MAO functional reconstruction layer. The degradation behavior of the LSP/MAO functional reconstruction layer will be investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the simulated body fluid (SBF). The degradation mechanism of the LSP/MAO functional reconstruction layer will be confirmed through electrochemical theories and modern microstructure testing technology. A computer simulation model will be established for technique optimization and controllable degradation of the functional reconstruction layer through GA-BP Neural Network. . III. Corrosion fatigue of surface modified magnesium alloy. The corrosion fatigue behavior of the substrate and LSP/MAO modified samples will be investigated by means of fatigue tests in SBF. The mechanical -electrochemical interaction effect during the corrosion fatigue will be analyzed, and the failure mechanism of the LSP/MAO functional reconstruction layer will be investigated considering the couple of corrosion and load. It will be revealed why LAS/MAO functional reconstruction layer has anti-corrosion and anti-fatigue properties.. IV. Prediction model of corrosion fatigue life. Based on theories of cumulative fatigue damage and fracture mechanics, a modified corrosion fatigue model will be established considering the critical surface method and crack closure effect. . This project plays an important role in development and application of magnesium-based implant materials, and promotes researches of corrosion theory and corrosion fatigue fracture control in magnesium alloy. Therefore, the research in this project not only has an important academic value but also an application prospect in medical science.
采用镁基材料制作可降解植入器件,修复或替代受损硬组织具有巨大的优势和应用前景,但是,其在生理电解质环境下过快的降解速率限制了临床应用。如何控制镁基植入器件的降解速率及抗腐蚀疲劳方面的研究几乎是空白。本项目采用激光冲击喷丸(LSP)和微弧氧化(MAO)复合改性技术,在镁合金表面构建了多尺度、多层次、功能化的纳米晶-生物活性陶瓷重构层,赋予了镁基植入体生物活性、生物相容性、耐腐蚀和长疲劳寿命等人体环境所要求的综合服役性能。以典型镁合金ZK60、AZ80为研究对象,在材料表面分别制备了MAO和LSP单一改性层以及LSP/MAO复合改性层,在模拟生理体液中进行了短期和长期浸泡试验、电化学测试、应力腐蚀及腐蚀疲劳试验。结合电化学理论及微观结构分析,调查了LSP/MAO重构层的腐蚀和降解行为,阐明了重构层的降解可调控机理。通过电化学阻抗谱演化,分析了腐蚀过程中的力学-电化学效应,探明了不同改性层在介质和载荷耦合作用下的失效机制,揭示了LSP/MAO重构层抗腐蚀和疲劳双重效应的原因。提出了修正的能量基疲劳寿命预测模型,其对改性镁合金不同加载条件下腐蚀疲劳寿命的预测精度高于传统的模型。该研究对新型医用降解镁基植入材料的制备和应用技术、镁合金防腐理论和腐蚀疲劳断裂控制的发展产生重要的推动作用。研究成果具有重要学术价值和医学应用前景。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Compressive deformation of rolled AZ80 magnesium alloy along different material orientations
轧制AZ80镁合金沿不同材料取向的压缩变形
DOI:10.1007/s10853-019-04238-5
发表时间:2019-11
期刊:Journal of Materials Science
影响因子:4.5
作者:Xiong Ying;Jiang Yanyao
通讯作者:Jiang Yanyao
Dynamic corrosion behavior of AZ80 magnesium alloy with different orientations in simulated body fluid
不同取向AZ80镁合金在模拟体液中的动态腐蚀行为
DOI:10.1016/j.matchemphys.2020.124039
发表时间:2021-02
期刊:Materials Chemistry and Physics
影响因子:4.6
作者:Zhu Tao;Yu Yi;Yang Jie;Shen Yongshui;He Liuyong;Xiong Ying
通讯作者:Xiong Ying
Effect of solution pH on stress corrosion cracking behavior of modified AZ80 magnesium alloy in simulated body fluid
溶液pH值对改性AZ80镁合金在模拟体液中应力腐蚀开裂行为的影响
DOI:10.1016/j.matchemphys.2021.124232
发表时间:2021-03
期刊:Materials Chemistry and Physics
影响因子:4.6
作者:He Liuyong;Yang Jie;Xiong Ying;Song Renguo
通讯作者:Song Renguo
Bioceramic Coating Produced on AZ80 Magnesium Alloy by One-Step Microarc Oxidation Process
一步微弧氧化工艺在AZ80镁合金上制备生物陶瓷涂层
DOI:10.1007/s11665-019-03925-3
发表时间:2019-02
期刊:Journal of Materials Engineering and Performance
影响因子:2.3
作者:Xiong Ying;Yang Zengyuan;Hu Xiaxia;Song Renguo
通讯作者:Song Renguo
LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application
AZ80镁合金上LSP/MAO复合生物涂层的生物医学应用
DOI:10.1016/j.msec.2017.03.003
发表时间:2017
期刊:Materials Science and Engineering: C
影响因子:--
作者:Xiong Ying;Hu Qiang;Song Renguo;Hu Xiaxia
通讯作者:Hu Xiaxia
织构型镁合金服役工况下多模式棘轮效应及全寿命棘轮疲劳损伤评定
- 批准号:--
- 项目类别:面上项目
- 资助金额:58万元
- 批准年份:2021
- 负责人:熊缨
- 依托单位:
镁合金多轴循环加载下的宏微观损伤演化与疲劳建模
- 批准号:51275472
- 项目类别:面上项目
- 资助金额:80.0万元
- 批准年份:2012
- 负责人:熊缨
- 依托单位:
国内基金
海外基金
