课题基金基金详情
复几何中两类完全非线性偏微分方程的研究
结题报告
批准号:
12001532
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
金希深
依托单位:
学科分类:
几何分析
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
金希深
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
本项目主要研究复几何中的形变Hermitian-Yang-Mills方程和复k-Hessian方程。这两类方程来源于超弦理论的研究和预定曲率问题,是当前复几何分析的重要研究内容。. 首先,我们讨论形变Hermitian-Yang-Mills方程,希望得到与其存在性相关的能量泛函逆紧性定理和Chern数不等式,并研究复空间中光滑解的刘维尔型定理。. 另一方面,我们讨论与复k-Hessian方程有关的多重位势理论,我们希望定义k-凸函数空间上面的Weil-Peterson度量、联络和测地线,并研究测地线的存在性和唯一性,进而研究k-凸函数空间在该Weil-Peterson度量下的完备化问题。. 本项目的研究内容是代数几何、多复变函数论、几何分析等几个数学分支的交叉,对超弦理论的研究有推动作用,具有很高的学术价值。
英文摘要
In this project, we mainly study deformed Hermitian-Yang-Mills equations and complex k-Hessian equations in the complex geometry. These PDEs are related to the superstring theory and prescribed curvature problems. They are also important parts in the modern complex geometric analysis.. Firstly, we consider the deformed Hermitian-Yang-Mills equations. We hope to get the relations betweent the existence of deformed Hermitian-Yang-Mills metrics and the properness of some energy functionals. We also consider the Chern number inequalities related to deformed Hermitian-Yang-Mills metrics. Furthermore, we will discuss the Liouville type theorem of deformed Hermitian-Yang-Mills equations and the theory of viscosity solutions about deformed Hermitian-Yang-Mills equations. . Secondly, we will discuss the geometry related to complex k-Hessian equations. More precisely, we consider the infinity dimensional space consisted of the k-convex functions on compact Kaehler manifolds. We hope to define a Weil-Peterson type metrics and consider the connections and geodesics related to it. At last, we consider the existence and uniqueness of such geodesics and also the completion of this function space under such Weil-Peterson metric.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1063/5.0130905
发表时间:2023-02
期刊:Journal of Mathematical Physics
影响因子:1.3
作者:Xiaoli Han;Xishen Jin;Yang Wen
通讯作者:Xiaoli Han;Xishen Jin;Yang Wen
DOI:10.1093/imrn/rnaa378
发表时间:2021-02
期刊:International Mathematics Research Notices
影响因子:1
作者:Xiaoling Han;Xishen Jin
通讯作者:Xiaoling Han;Xishen Jin
DOI:10.1007/s00526-020-01880-9
发表时间:2021-01
期刊:Calculus of Variations and Partial Differential Equations
影响因子:2.1
作者:Xiaoli Han;Xishen Jin
通讯作者:Xiaoli Han;Xishen Jin
DOI:https://doi.org/10.1007/s11425-022-2125-3
发表时间:2023
期刊:SCIENCE CHINA Mathematics
影响因子:--
作者:xishen jin;jiawei liu
通讯作者:jiawei liu
DOI:10.1090/tran/8963
发表时间:2023
期刊:Transactions of the American Mathematical Society
影响因子:--
作者:Xiaoli Han;Xishen Jin
通讯作者:Xishen Jin
国内基金
海外基金