基于域适应迁移的未知模态下磨矿粒度分布在线软测量和控制方法研究

批准号:
61973226
项目类别:
面上项目
资助金额:
60.0 万元
负责人:
阎高伟
依托单位:
学科分类:
自动化检测技术与装置
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
阎高伟
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
大型工业球磨机是流程工业的重要基础设备,其关键产品质量指标磨矿粒度分布和负荷参数缺少在线检测方法,难以形成有效的闭环反馈控制,普遍存在产品质量不稳定和高能耗问题。软测量方法是测量上述参数的可行方案,但实际过程中的多模态特性会导致软测量模型失准。.本课题致力于引入迁移学习理论解决未建模未知模态下磨矿粒度分布测量和控制问题。重点研究多模态过程中建模与实时数据概率分布失配时基于域适应的软测量建模理论和方法。综合考虑概率和流形空间的模态特征,探明数据和模型高质量迁移的机制和条件,建立多源域融合迁移软测量模型在线更新机制,实现未知模态下磨机负荷参数的软测量。研究磨矿粒度分布的基函数表示及其权值与输入变量的非线性动态关系求解方法,获得磨矿粒度分布信息。在此基础上实现磨矿粒度的闭环多目标随机分布控制,提高产品质量和降低能耗。.本研究将为流程工业中广泛存在的多工况未知模态下参数的软测量和控制提供新的思路。
英文摘要
Large-scale ball mill is a crucial infrastructure in process industry. For the two key product quality indicators, particle size distribution and load parameters, it lacks online measurement methods. Accordingly, it is difficult to form effective closed loop feedback control, resulting in the common issues of unstable product quality and high energy consumption. Soft sensing is a feasible solution to measure these two key parameters mentioned above. In the actual industrial process, soft sensing model misalignment is likely to occur, due to multi modes..In this proposal, transfer learning theory is introduced, aiming at the measurement and control for particle size distribution under unmodeled and unknown mode. The core research is the soft sensing modeling theory and method using domain adaptation, under circumstance of mismatch of modeling and realtime data distribution in multimode processes. First, the conditions and mechanisms for high-quality transfer of data and models are studied, considering the modal features of probability and manifold space simultaneously. Second, on-line updating mechanism for multi-source domain fusion transfer soft sensing model is researched, to realize the mill load parameters soft measurement under unknown mode. Third, the basis function representation of particle size distribution and the nonlinear dynamic relation between basis function weights and input variables are researched, obtaining the particle size distribution information. Based on this, effective closed multi-objective stochastic distribution control can be performed, leading to the improvement of product quality and consumption reduction..This study will provide new insights for soft sensing and control for the parameters under multiple-condition and unknown-mode environment in process industry.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Experimental analysis of wet mill load parameter based on multiple channel mechanical signals under multiple grinding conditions
多种磨削条件下基于多通道机械信号的湿磨负荷参数实验分析
DOI:10.1016/j.mineng.2020.106609
发表时间:2020-12
期刊:Minerals Engineering
影响因子:4.8
作者:Tang Jian;Yan Gaowei;Liu Zhuo;Liu Yefeng;Yu Gang;Sheng Ning
通讯作者:Sheng Ning
DOI:10.16183/j.cnki.jsjtu.2020.171
发表时间:2020
期刊:上海交通大学学报
影响因子:--
作者:来颜博;阎高伟;程兰;陈泽华
通讯作者:陈泽华
DOI:10.3390/e24020164
发表时间:2022-01-21
期刊:Entropy (Basel, Switzerland)
影响因子:--
作者:Peng H;Li H;Zhang Y;Wang S;Gu K;Ren M
通讯作者:Ren M
DOI:10.13195/j.kzyjc.2023.0133
发表时间:2023
期刊:控制与决策
影响因子:--
作者:霍海丹;阎高伟;程兰;任密蜂;肖舒怡
通讯作者:肖舒怡
DOI:10.19650/j.cnki.cjsi.j2107920
发表时间:2021
期刊:仪器仪表学报
影响因子:--
作者:徐志强;任密蜂;程兰;李荣;阎高伟
通讯作者:阎高伟
国内基金
海外基金
