基于交叉频率耦合的大脑跨区域因果信息传递研究

批准号:
62001026
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
史文彬
依托单位:
学科分类:
信号理论与信号处理
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
史文彬
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
脑疾病的早期诊断与干预是我国脑科学计划的重要发展方向,以交叉频率耦合技术为基础的脑电信号分析方式已逐渐成为脑疾病反演的常用工具之一。然而其在面临多通道脑电信号时,会由于脑电信号的非线性属性导致多变量信号分量难以在频率上相互对准,且缺乏因果关系的量化能力,限制了其在脑疾病反演中的应用价值。为了解决这一问题,本项目将首先建立多通道脑电信号在频率上的同步非线性分解算法,得到频率上相互对准的多通道脑电信号分量。其次,针对多变量传递熵计算中的参数优化问题,本项目将全面覆盖低频相位、高频相位、低频幅值、高频幅值等四种因果信息传递关系的度量。最后,根据所建立的算法,构建大脑网络动态因果信息传递图谱。通过上述算法的开发与突破,研究成果将可针对性地填补交叉频率耦合在大脑跨区域耦合关系的探索中面临的关键技术空白,并为其在临床诊断及脑机接口中的应用奠定基础。
英文摘要
Early diagnosis and intervention of brain diseases becomes an important tendency in China brain science program. The analysis method of EEG signal based on cross frequency coupling has gradually become one of the common tools for brain disease inversion. However, in the analysis of multichannel EEG signals, it is difficult for the multivariable signal components to align with each other in frequency domain due to the nonlinear attribute of EEG signal. In addition, it is impossible to quantify causality relationships. These limit the application of the cross-frequency coupling in the inversion of brain diseases. In order to solve this problem, the project will first propose a non-linear decomposition method of multi-channel EEG signals and obtain the components of multi-channel EEG signals aligned in frequency with each other. Secondly, to solve the problem of parameter optimization in the calculation of multivariable transfer entropy, this project will comprehensively cover the measurement of four causal information transfer relationships of low-frequency phase, high-frequency phase, low-frequency amplitude and high-frequency amplitude. Finally, according to the proposed algorithm, a dynamic causal information transfer graph of the brain network will be constructed. The development and breakthrough of the above algorithm will fill the key technical gaps in the exploration of spatial cross-frequency couplings in the brain, and lay the foundation for its application in clinical diagnosis and brain computer interface.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.chaos.2023.113646
发表时间:2023-08
期刊:Chaos, Solitons & Fractals
影响因子:--
作者:Wenbin Shi;Hua-Quan Feng;Xianchao Zhang;C. Yeh
通讯作者:Wenbin Shi;Hua-Quan Feng;Xianchao Zhang;C. Yeh
DOI:10.1007/s11571-023-09953-z
发表时间:2023-03
期刊:Cognitive Neurodynamics
影响因子:3.7
作者:Yidong Hu;Wenbin Shi;C. Yeh
通讯作者:Yidong Hu;Wenbin Shi;C. Yeh
DOI:10.1109/tnsre.2023.3323892
发表时间:2023-10
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering
影响因子:4.9
作者:Juntong Lyu;Wenbin Shi;Chuting Zhang;C. Yeh
通讯作者:Juntong Lyu;Wenbin Shi;Chuting Zhang;C. Yeh
DOI:10.1063/5.0156340
发表时间:2023-12-01
期刊:CHAOS
影响因子:2.9
作者:Li,Jinfeng;Zhang,Xianchao;Yeh,Chien-Hung
通讯作者:Yeh,Chien-Hung
DOI:10.34133/cbsystems.0034
发表时间:2023
期刊:Cyborg and bionic systems (Washington, D.C.)
影响因子:--
作者:Yeh CH;Zhang C;Shi W;Lo MT;Tinkhauser G;Oswal A
通讯作者:Oswal A
国内基金
海外基金
