关于算子代数上非交换Weyl-von Neumann定理的研究
结题报告
批准号:
12001437
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
文仕林
依托单位:
学科分类:
算子理论
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
文仕林
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
算子理论与算子代数中的Weyl-von Neumann定理在过去几十年里被广泛研究。近几年,由于在算子代数中引入了新的概念,Voiculescu定理(Voiculescu在1976年证明的非交换Weyl-von Neumann定理)已被部分推广为交换C*-代数(或AF代数)到半有限因子von Neumann代数的情形。本项目拟研究以下问题:(一)综合运用算子理论与算子代数的技巧,分析AF代数的C*-子代数的结构,以及研究它到半有限因子von Neumann代数的Voiculescu定理;(二)为了理解顺从C*-代数的结构,研究顺从C*-代数到有限因子von Neumann代数的“近似正交补”关系,以及它到半有限因子von Neumann代数的Voiculescu定理。. 对于以上问题的研究,将会进一步丰富和完善算子代数上Voiculescu定理的相关理论。
英文摘要
The Weyl-von Neumann theorem in operator theory and operator algebras has been extensively studied over the past several decades. In recent years, due to the introduction of new concepts in operator algebras, the Voiculescu's theorem (short for the Voiculescu's non-commutative Weyl-von Neumann theorem in 1976) for representations of unital commutative C*-algebras (or AF algebras) into semifinite von Neumann factors were proved. In this project, we will mainly study the following issues: (1) Combining the operator theory and operator algebras techniques, we will analyze the structure of the C*-subalgebras of AF algebras, and study the Voiculescu's theorem for representations of the C*-subalgebras of AF algebras into semifinite von Neumann factors; (2) In order to understand the structure of nuclear C*-algebras, we will study the approximate summands of representations of unital nuclear C*-algebras into finite von Neumann factors and the Voiculescu's theorem for representations of unital nuclear C*-algebras into semifinite von Neumann factors. . These investigations will further enrich and perfect the theory of the Voiculescu's theorem in operator algebras.
专著列表
科研奖励列表
会议论文列表
专利列表
国内基金
海外基金