紧致高效图像纹理特征表达与学习方法研究
结题报告
批准号:
61872379
项目类别:
面上项目
资助金额:
67.0 万元
负责人:
刘丽
学科分类:
F0210.计算机图像视频处理与多媒体技术
结题年份:
2022
批准年份:
2018
项目状态:
已结题
项目参与者:
老松杨、郭裕兰、郭延明、陈杰、张芯、邓婉霞、郭树璇、梁经韵、郭承玉
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
纹理分析是计算机视觉和模式识别领域一个具有重要理论价值和广阔应用前景的研究课题。图像纹理表示面临一系列挑战,诸如高计算复杂度、资源受限的智能移动设备应用、特征高鲁棒性需求和高数据依赖性等,使得现有主流方法无法满足实际应用需求。.研究内容包括:研究紧致高效的基于深度卷积神经网络纹理特征表达方法(TexNets家族);研究新颖的、鲁棒的、从数据中自动学习紧致二值纹理特征的方法(RoLBP家族);研究融合TexNets家族和RoLBP家族获得具有互补性的更强大的纹理特征。.本课题预期取得理论创新与技术突破,促进纹理特征的广泛应用。理论上,建立深度学习、局部二值模式、以及稀疏表示和压缩感知理论之间联系,增强深度学习的可解释性;算法上,提出下一代紧致高效纹理特征表达与学习方法;应用上,将提出的方法应用于人脸识别、人脸(微)表情识别和医学图像处理。
英文摘要
Texture is an important characteristic of many types of images, ranging from multispectral remotely sensed images to microscopic images. Texture analysis plays a fundamental role image understanding, computer vision and pattern recognition. Real world applications pose a number of challenges to texture representation, such as the emerging big dimensionality, the prevalence of resources limited handheld devices, unconstrained imaging distortions, and the unavailability of large amount of annotated training data. These are prohibitively limiting factors for the use of most existing approaches such as large scale deep convolutional neural network based features. .The key challenges are addressed from three aspects. (i) This project intends to develop compact, efficient and discriminative texture specific Convolutional Neural Network (CNN) based representations (TexNets Family) by exploring innovative ideas from the fields of Sparse Representation (SR), Random Projection (RP), Compressed Sensing (CS) and Local Binary Pattern (LBP) methodology. (ii) There are many applications where only limited amounts of annotated training data can be available or collecting labeled training data is too expensive. In addition, it is not clear yet how general geometric invariances could be integrated into deep CNN networks. In order to handle such problems, this project intends to develop novel and robust LBP type texture descriptors (RoLBP Family) by exploring compact binary codes learning approaches that learns more discriminative and robust compact binary codes automatically from data. (iii) Novel methods for combining TexNets and RoLBP which aim to discover complementary and more powerful texture representations will be developed as well. .As a result of this project, theoretically, we can expect fruitful insights in DCNN understanding by providing formal connections among deep learning techniques, LBP methodology and the theories of SR, RP and CS. Algorithmically, we can expect the next generation texture methodology — revolutionary compact, efficient and discriminative texture representations that have low dimensionality, low computational complexity, robustness to imaging distortions and degradations, and adaptability to different types of problems and can be learned with moderate amounts of training data. Practically, novel results for face and facial expression recognition, and medical image analysis can also be expected.
纹理分析是计算机视觉和模式识别领域一个具有重要理论价值和广阔应用前景的研究课题。图像纹理表示面临一系列挑战,诸如高计算复杂度、资源受限的智能移动设备应用、特征高鲁棒性需求和高数据依赖性等,使得现有主流方法无法满足实际应用需求。研究内容包括:研究紧致高效的基于深度卷积神经网络纹理特征表达方法(TexNets家族);研究新颖的、鲁棒的、从数据中自动学习紧致二值纹理特征的方法(RoLBP家族);研究融合TexNets家族和RoLBP家族获得具有互补性的更强大的纹理特征。本课题预期取得理论创新与技术突破,促进纹理特征的广泛应用。理论上,建立深度学习、局部二值模式、以及稀疏表示和压缩感知理论之间联系,增强深度学习的可解释性;算法上,提出下一代紧致高效纹理特征表达与学习方法;应用上,将提出的方法应用于人脸识别、人脸(微)表情识别和医学图像处理。在本项目支持下,团队共发表/录用学术论文37篇,其中SCI检索论文28篇(IJCV/IEEE Transactions论文20篇,其中人工智能顶刊IEEE TPAMI 2篇、IJCV 3篇、IEEE TIP 3篇),自动化学报论文两篇,ICCV/ECCV/ACM MM等人工智能领域国际会议论文7篇。5项国家发明专利被授权,3项国家发明专利被受理。项目负责人刘丽研究员,入选国家“万人计划”青年拔尖人才(2022)、国家重点研发首席青年科学家(2021)、爱思唯尔中国高被引学者(2021)、国防科技大学第三批高层次创新人才科技领军人才培养对象(2022)、湖湘青年英才(2021);2020年,项目负责人在视觉纹理信息紧致表示方面的研究,获中国电子学会自然科学一等奖。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1109/tgrs.2021.3139994
发表时间:2022-01
期刊:IEEE Transactions on Geoscience and Remote Sensing
影响因子:8.2
作者:Yan Zhao;Lingjun Zhao;Zhongkang Liu;Dewen Hu;Gangyao Kuang;Li Liu
通讯作者:Yan Zhao;Lingjun Zhao;Zhongkang Liu;Dewen Hu;Gangyao Kuang;Li Liu
Beyond Vanilla Convolution: Random Pixel Difference Convolution for Face Perception
超越普通卷积:用于面部感知的随机像素差异卷积
DOI:10.1109/access.2021.3117955
发表时间:2021
期刊:IEEE ACCESS
影响因子:3.9
作者:Liu Wenzhe;Su Zhuo;Liu Li
通讯作者:Liu Li
DOI:10.1109/tmm.2021.3080516
发表时间:2022
期刊:IEEE Transactions on Multimedia
影响因子:7.3
作者:Wanxia Deng;Lingjun Zhao;Qing Liao;Deke Guo;Gangyao Kuang;Dewen Hu;Matti Pietikainen;Li Liu
通讯作者:Li Liu
Domain Knowledge Powered Two-Stream Deep Network for Few-Shot SAR Vehicle Recognition
领域知识驱动的双流深度网络用于少镜头 SAR 车辆识别
DOI:10.1109/tgrs.2021.3116349
发表时间:2022
期刊:IEEE Transactions on Geoscience and Remote Sensing
影响因子:8.2
作者:Linbin Zhang;Xiangguang Leng;Sijia Feng;Xiaojie Ma;Kefeng Ji;Gangyao Kuang;Li Liu
通讯作者:Li Liu
Joint Clustering and Discriminative Feature Alignment for Unsupervised Domain Adaptation
用于无监督域适应的联合聚类和判别性特征对齐
DOI:10.1109/tip.2021.3109530
发表时间:2021-09
期刊:IEEE TRANSACTIONS ON IMAGE PROCESSING
影响因子:10.6
作者:Deng Wanxia;Liao Qing;Zhao Lingjun;Guo Deke;Kuang Gangyao;Hu Dewen;Liu Li
通讯作者:Liu Li
紧致高效视觉表示学习与识别
基于随机投影的图像纹理特征及其应用研究
国内基金
海外基金