课题基金基金详情
双掺杂1.3微米InAs/GaAs量子点激光器研究
结题报告
批准号:
62004191
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
吕尊仁
学科分类:
半导体光电子器件与集成
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
吕尊仁
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
现代高速光通信系统迫切需求低成本、低功耗、小型无制冷的激光光源。1.3微米量子点激光器由于量子点三维量子限制效应,展现出低阈值电流密度、高温度稳定、高调制速率、抗反射等优势,是一种极具应用前景的新型光源。本项目结合P型调制掺杂可提升量子点激光器温度稳定性和调制特性以及N型直接掺杂可降低激光器阈值电流和提升斜率效率的优势,提出开展高性能双掺杂1.3微米InAs/GaAs量子点激光器研究,降低载流子热激发及缺陷对量子点激光器性能的影响,综合提高激光器性能。本项目将重点研究基于P型调制掺杂和N型直接掺杂的双掺杂技术对量子点材料物理特性及激光器性能的影响,探索新的材料生长机理与技术、新的物理现象以及新的器件原理。通过生长参数优化,获得高质量双掺杂量子点材料并实现高性能量子点激光器的制备。本项目研究将为实现高性能量子点激光器提供一种新的技术途径,有助于推进1.3微米量子点激光器的实用化进程。
英文摘要
Modern high speed optical communication system urgently needs low cost, low power consumption, small size, and uncooled laser light source. Due to the three-dimensional quantum confinements of quantum dots (QDs), 1.3 micron QD laser has advantages of low threshold current density, high temperature stability, high modulation rate, and anti-reflection, which is a new type of light source with great application prospect. By combining the advantages of the p-type modulation doping for significantly improving the temperature stability and modulation characteristics of the QD lasers and the n-type direct doping for reducing the threshold current of the QD lasers and improving the slope efficiency of the QD lasers, the project will carry on the research on high-performance doubly-doped 1.3 micron InAs/GaAs QD lasers. The doubly-doping technique will reduce the influence of the thermal excitation of the carrier and the defect on the performance of the QD lasers, and improve the performance of the lasers comprehensively. The project will focus on the influence of the doubly-doping based on both p-type modulation doping and n-type direct doping on the physical properties of QD materials and the performance of lasers, and explore new material growth mechanisms and technologies, new physical phenomena, and new theory of devices. By optimizing the growth parameters, high-quality doubly-doped QD material and high-performance QD laser will be obtained. The research of the project will provide a new technical approach for the realization of high-performance QD lasers, and help to advance the practical process of 1.3 micron QD lasers.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.heliyon.2023.e20005
发表时间:2023-09
期刊:HELIYON
影响因子:4
作者:Wang, Shenglin;Wang, Shuai;Yang, Xiaoguang;Lv, Zunren;Chai, Hongyu;Meng, Lei;Yang, Tao
通讯作者:Yang, Tao
DOI:10.3390/photonics9050290
发表时间:2022
期刊:Photonics
影响因子:2.4
作者:Shenglin Wang;Xiaoguang Yang;Hongyu Chai;Zunren Lv;Shuai Wang;Haomiao Wang;Hong Wang;Lei Meng;Tao Yang
通讯作者:Tao Yang
DOI:10.1063/5.0044313
发表时间:2021-05
期刊:AIP Advances
影响因子:1.6
作者:Yanbing Qiu;Zunren Lv;Hong Wang;Haomiao Wang;Xiaoguang Yang;Tao Yang
通讯作者:Yanbing Qiu;Zunren Lv;Hong Wang;Haomiao Wang;Xiaoguang Yang;Tao Yang
Ultra-high thermal stability InAs/GaAs quantum dot lasers grown on on-axis Si (001) with a record-high continuous-wave operating temperature of 150 °C.
在轴上 Si (001) 上生长的超高热稳定性 InAs/GaAs 量子点激光器,具有创纪录的 150 °C 连续波工作温度。
DOI:10.1364/oe.494251
发表时间:2023
期刊:Optics express
影响因子:3.8
作者:Zunren Lv;Shuai Wang;Shengli Wang;Hongyu Chai;L. Meng;Xiaoguang Yang;T. Yang
通讯作者:T. Yang
DOI:10.1088/1674-1056/ac657f
发表时间:2022
期刊:Chinese Physics B
影响因子:1.7
作者:Hong Wang;Zunren Lv;Shuai Wang;Haomiao Wang;Hongyu Chai;Xiaoguang Yang;Lei Meng;Chen Ji;Tao Yang
通讯作者:Tao Yang
国内基金
海外基金