课题基金基金详情
奇点理论视角下de Sitter空间中子流形的几何性质研究
结题报告
批准号:
12001079
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
王咏乔
依托单位:
学科分类:
代数拓扑与几何拓扑
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
王咏乔
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
De Sitter空间是爱因斯坦场方程的真空解之一,也是半黎曼几何中的伪球模型。本项目主要研究de Sitter空间中含奇点的子流形,借助拉格朗日/勒让德奇点理论,将这些子流形视作焦散面和波前等拓扑意义下的研究对象。本项目主要包括以下几个方面:.(1)研究3维de Sitter空间中曲线的渐屈线和焦曲面,寻找曲线新的几何不变量,通过曲线与模型子流形的切触关系,研究渐屈线和焦曲面的奇点与几何不变量的内在联系。.(2)利用勒让德对偶定理研究de Sitter空间中勒让德对偶子流形的几何拓扑性质,拟给出单参数族伪球之间的勒让德对偶定理。.(3)类光子流形是退化子流形,利用奇点理论和退化子流形的微分几何,研究de Sitter空间中类光子流形的奇点和几何性质。.希望通过本项目的研究,促进奇点理论应用研究的发展,并为退化子流形研究提供新的方法和思路。
英文摘要
De Sitter space is not only one of the vacuum solutions of the Einstein field equation, but also a pseudo-spherical model in semi-Riemannian geometry. This project will focus on the submanifolds with singular points on de Sitter space. By Lagrangian/Legendrian singularity theory, the submanifolds are viewed as caustics and wave fronts in the sense of topology. This project mainly includes the following aspects:.(1) Studying geometric properties of evolutes and focal surfaces for curves on three dimensional de Sitter space, looking for new geometric invariants of curves, giving the relations between the geometric invariants and the singularities of evolutes and focal surfaces by the contact between curves and model submanifolds..(2) By Legendrian dual theorem, studying geometry and topological properties of Legendrian dual submanifolds on de Sitter space, giving one-parameter pseudo-spherical Legendrian dual theorem. .(3) Lightlike manifolds are degenerate submanifolds, we study the geometric properties of lightlike submanifolds on de Sitter space by singularity theory and the differential geometry of degenerate submanifolds..By this project, we hope to find new methods or thoughts for studying degenerate submanifolds from singularity theory, and promote the development of the application of singularity theory.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Envelopes created by circle families in the plane
由平面上的圆族创建的包络线
DOI:10.1007/s00022-023-00708-z
发表时间:2023
期刊:Journal of Geometry
影响因子:0.6
作者:Yongqiao Wang;T. Nishimura
通讯作者:T. Nishimura
DOI:10.1002/mma.8987
发表时间:2022-12
期刊:Mathematical Methods in the Applied Sciences
影响因子:2.9
作者:Yongqiao Wang;Lin Yang;Yuan Chang;Haiming Liu
通讯作者:Yongqiao Wang;Lin Yang;Yuan Chang;Haiming Liu
DOI:10.1142/s0219887821502224
发表时间:2021
期刊:International Journal of Geometric Methods in Modern Physics
影响因子:--
作者:Yongqiao Wang;Yuan Chang;Haiming Liu
通讯作者:Haiming Liu
国内基金
海外基金