课题基金基金详情
MCH低温高效脱氢镍基催化剂的构建及其催化性能研究
结题报告
批准号:
21975174
项目类别:
面上项目
资助金额:
65.0 万元
负责人:
潘大海
依托单位:
学科分类:
氢能源化学
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
潘大海
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
针对当前镍基脱氢催化剂低温活性差及易烧结/积碳失活等严重制约甲基环己烷(MCH)─甲苯储氢技术发展的关键问题,本项目以可控合成表面部分包覆金属杂原子氧化物纳米粒子的有序介孔铝基复合氧化物载体为出发点,通过在微观尺度上调控载体表面电子性质、缺陷位含量及金属杂原子氧化物纳米粒子的覆盖度,强化载体─镍间相互作用,诱使超小镍纳米粒子稳定均匀负载的同时,抑制非活性镍铝尖晶石的生成。借助缺陷位锚定、金属杂原子氧化物纳米粒子表面部分包覆及金属杂原子氧化物─镍纳米粒子间电子传递效应,增强镍纳米粒子的抗烧结和抗积碳性能,并改善其活性位的几何/电子结构,以提高所得催化剂在MCH脱氢制甲苯反应中的低温反应活性、选择性及稳定性。通过深入研究催化剂中载体─镍间作用机制与其催化性能的关系,阐明载体性质对镍纳米粒子尺寸及其活性位几何/电子结构的调控机理,揭示催化剂构效关系,为高效稳定镍基脱氢催化剂的研发提供新的路径。
英文摘要
Methylcyclohexane-toluene-hydrogen system has been drawn increasing attention as a very promising technology for hydrogen storage and transport via a reversible catalytic hydrogenation-dehydrogenation cycle, due to its relatively high hydrogen storage density and convenient usability. At present, the widely used supported noble metal catalysts for extraction of hydrogen from the liquid organic hydrides exhibit low catalytic activity at low reaction temperature and fast deactivation attributed to the sintering of active metal nanoparticles and formation of coke during the reactions. So, the key to utilize methylcyclohexane-toluene-hydrogen system in hydrogen storage technology relies on the development of efficient and stable dehydrogenation catalysts. This project aims to deeply understand the interaction between support and active metal nanoparticles; how this interaction and support properties influence the geometric/electronic structure and stability of active metal nanoparticles, and further how to develop a new and controllable approach for synthesis of ordered mesoporous aluminum-based composite oxides with high specific surface area, adjustable mesostructures, enhanced stability, and tunable surface properties, which are to be applied as support to load active Ni nanoparticles to fabricate novel Ni-based catalysts with low preparation cost and improved catalytic performance in the dehydrogenation of methylcyclohexane. By optimizing the cooperative co-assembly synthetic conditions, the hydrolysis and condensation of Al and metal heteroatom precursors are controlled to enhance the interaction between surfactants and aluminum/ heteroatom species. Consequently, the ordered mesostructure can be assembled at the mesoscale, and surface properties (such as the electronic properties, defect site content, and cover degree of metal heteroatom oxide nanoparticles formed during the calcination process) of ordered mesoporous aluminum-based composite oxides can be controlled at the atomic scale by selectively incorporating metal heteroatoms with different atomic radius and electronegativity into mesoporous framework of alumina and optimizing calcination conditions to control the migration rate and migration scale of metal heteroatoms. The significantly strengthened metal Ni-support interaction can induce the highly homogeneous dispersion of ultrafine Ni nanoparticles; Meanwhile, the anchoring role of surface defect sites, partial encapsulation from metal heteroatom oxide nanoparticles, and the electron transmission between Ni nanoparticles and metal heteroatom oxide nanoparticles can play crucial roles in suppressing the formation of inactive NiAl2O4, enhancing the anti-sintering and anti-coke performance of Ni nanoparticles, and improving the geometric/electronic structure of active sites of Ni nanoparticles. As a result, the resultant Ni-based catalysts will exhibit higher low temperature catalytic activity, selectivity, and stability than those of traditional dehydrogenation catalysts reported previously in the dehydrogenation of methylcyclohexane. Various characteristic techniques combined theoretical calculation will be applied to systematically discuss the relationship between the interaction of support─Ni nanoparticles and catalytic performance of catalysts. The effects of support properties on the size of Ni nanoparticles and the geometric/electronic structure of active sites of Ni nanoparticles will be revealed. Through our study, new understanding in the structure-function relationship of catalysts will be obtained, and a new route for the preparation and development of novel Ni-based dehydrogenation catalysts will be provided.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3390/ma16072868
发表时间:2023-04-04
期刊:Materials (Basel, Switzerland)
影响因子:--
作者:Tan M;Pan D;Chen S;Yan X;Han L;Li R;Wang J
通讯作者:Wang J
DOI:10.1002/slct.202000482
发表时间:2020
期刊:ChemistrySelect
影响因子:2.1
作者:Shi Xiufeng;Xing Bin;Pan Dahai;Fan Binbin;Li Ruifeng
通讯作者:Li Ruifeng
DOI:10.1002/aoc.5396
发表时间:2019-12
期刊:Applied Organometallic Chemistry
影响因子:3.9
作者:Shuwei Chen;Zheqi Xu;D. Tan;Dahai Pan;X. Cui;Yan Qiao;Ruifeng Li
通讯作者:Shuwei Chen;Zheqi Xu;D. Tan;Dahai Pan;X. Cui;Yan Qiao;Ruifeng Li
Synthesis of novel mesoporous sulfated zirconia nanosheets derived from Zr-based metal-organic frameworks
锆基金属有机骨架新型介孔硫酸化氧化锆纳米片的合成
DOI:10.1039/c9ce01456j
发表时间:2020-01-07
期刊:CRYSTENGCOMM
影响因子:3.1
作者:Lu, Ningyue;Zhang, Xuelian;Li, Ruifeng
通讯作者:Li, Ruifeng
DOI:10.1016/j.ces.2021.117388
发表时间:2021-12
期刊:Chemical Engineering Science
影响因子:4.7
作者:Dahai Pan;Y. Ru;Tongliang Liu;Yongjie Wang;F. Yu;Shuwei Chen;Xiaoliang Yan;B. Fan;Ruifeng Li-Ruife
通讯作者:Dahai Pan;Y. Ru;Tongliang Liu;Yongjie Wang;F. Yu;Shuwei Chen;Xiaoliang Yan;B. Fan;Ruifeng Li-Ruife
国内基金
海外基金