基于Lancaster结构二阶系统解耦方法中的保持问题研究

批准号:
11226324
项目类别:
数学天元基金项目
资助金额:
3.0 万元
负责人:
王淑娟
依托单位:
学科分类:
A0502.数值代数
结题年份:
2013
批准年份:
2012
项目状态:
已结题
项目参与者:
沈继红、梁洪、姚红梅、胡波、何晶
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
二阶系统广泛产生于控制、振动等工程实际领域,在对其进行结构动力特性分析时,便会涉及到二阶系统的解耦问题,即寻找主坐标变换将三个系数矩阵同时对角化,其实现条件苛刻。虽然,数值代数领域基于Lancaster结构研究二阶系统解耦已取得一定成果,但相关算法的保结构和保谱等性质的实现仍需进一步完善提高。本项目针对基于Lancaster结构二阶系统解耦方法中的保持问题进行深入研究,以求进一步完善已有解耦算法,并为其在工程实践中应用奠定基础。首先,研究解耦变换的有效数值求解算法及解耦变换的保对称性。解耦变换描述了系统解耦前后的一种非线性关系,研究其求解及性质刻画对工程应用具有重要意义;其次,研究解耦变换的保结构和保谱特性的刻划与实现。要使解耦有意义就必须保谱,而要保谱就必须保结构,因此,研究解耦变换的这两个保持性质至关重要;最后,研究一类齐次Sylvester方程非奇异解的存在、求解算法及解的保对称性。
英文摘要
Quadratic systems arise extensively in many applications, such as control systems. In structural dynamic characteristics analysis of the dynamic system, Quadratic systems decoupling will be involved. It means to find coordinate transformations diagnalizing three coefficient matrices simultaneous, which is very harsh to accomplish. Although it had achieved some results that researching the problem based on Lancaster structure in numerical algebra, the implemention of structure preserving and isospectral characteristcs of relative algorithm remains to perfect further.. Focuing on the preserver problems researchees in quadratic system decoupling based on Lancaster structrue, this project is dedicated to improve and perfect the existing agorithm, and lay the foundation for it''s application in engineering practices. Firstly, effective numerical algorithms is researched to find decoupling transformations, along with its symmetric preserving characteristic. Decoupling transformations describe a kind of nonlinear of relationships between systems before and after decoupling, which is significant for engineering application. Secondly, the structure and spectral preserving problems are considered and descripted. Isospectrality is the key of decoupling, furthermore, Lancaster structure preserving is the key of isospectrality, thus, it is extremely important to reserch these two preserver problems. Finally, the existence and symetric characteristics of nonsingular solution of a kind of homogeneous Sylvester equation are researched.
二阶系统解耦可以将一个多自由度系统转化成多个无关的单自由度子系统,它不仅为系统响应的计算提供有效方法,而且为系统的定量分析带来极大的便利,因此,研究二阶系统解耦具有重要意义。项目组针对基于Lancaster结构的二阶系统解耦方法中涉及到的保持问题进行了研究,进一步完善了现有算法,并将其应用到动载荷时域识别中。首先,利用Jordan三元组理论和标准三元组理论给出了保结构变换满足的一种形式,并利用适当的参数选取得到期望的解耦变换。其次,利用同谱解耦系统的构造来实现算法的保持性质,特别研究了当特征值亏损时,二阶系统的解耦判断条件和实解耦系统的构造。最后,提出一种基于二阶系统解耦的动载荷时域识别方法,通过理论推导建立数学模型,将基于Lancaster结构的二阶系统解耦方法应用到工程实际中,改进现有识别算法的不足。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:--
发表时间:2012
期刊:系统科学与数学
影响因子:--
作者:沈继红, 胡波, 王侃
通讯作者:沈继红, 胡波, 王侃
DOI:--
发表时间:2012
期刊:振动与冲击
影响因子:--
作者:沈继红;胡波;王侃;金鑫
通讯作者:金鑫
DOI:--
发表时间:2012
期刊:控制工程
影响因子:--
作者:沈继红;胡波;王淑娟
通讯作者:王淑娟
国内基金
海外基金
