大带隙衬底上二维锗烯电子结构与新奇量子现象的探测
结题报告
批准号:
11904094
项目类别:
青年科学基金项目
资助金额:
26.0 万元
负责人:
张利杰
依托单位:
学科分类:
A2001.凝聚态物质结构、相变和晶格动力学
结题年份:
2022
批准年份:
2019
项目状态:
已结题
项目参与者:
--
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
量子自旋霍尔效应(QSHE)是一种新型非平庸拓扑量子态,理论预言可存在于石墨烯中,然而由于其自旋轨道耦合(SOC)带隙太小(~24μeV),实验上难以实现。类石墨烯二维锗烯的SOC带隙比石墨烯大三个数量级,可在接近室温(~277K)观测到QSHE。六方氮化硼(h-BN)晶格常数与锗烯匹配,且有近6eV的带隙使锗烯费米能级处的相关电子态不与衬底杂化。最近,申请人成功在带隙材料MoS2上制备了锗烯,基于此,我们将分别以MoS2和hBN为衬底制备锗烯,探索其电子结构及新奇量子现象,利用低温扫描隧道显微镜/谱(STM/STS)对锗烯的结构和体相及边缘电子态进行表征,通过STS期望得到锗烯内部有带隙、边缘呈导电性的作为QSHE特征的谱图信息。此外,通过外加电场对锗烯能带进行调控以打开可观的带隙。通过本项目的研究进一步认识锗烯物性与新奇量子效应,并为锗烯基低耗散自旋电子学器件应用提供科学依据。
英文摘要
The quantum spin Hall effect, a novel nontrivial topological quantum state of matter, has been proposed in 2005 by Kane and Mele for graphene. In marked contrast to the conventional quantum Hall effect, the quantum spin Hall effect (QSHE) does not require an external magnetic field. The spin-orbit coupling in graphene opens a band gap at the K and K’ points in the surface Brillouin zone. Unfortunately, the spin-orbit gap in graphene is very small (~24 μeV) and therefore the QSHE in graphene only occurs at extremely low temperatures (< 0.3 K). Germanene (the Ge counterpart of graphene) has a spin-orbit gap that is ~3 orders of magnitude larger than that of graphene. This means that the QSHE for this two-dimensional material would be observable at experimentally accessible temperatures! The QSHE is characterized by topological protected gapless helical edges states. These topological protected edges states are spin-polarized and have a vanishing charge Hall conductance and a quantized spin Hall conductance. Recently we have successfully synthesized germanene on several substrates. Scanning tunneling spectroscopy of germanene grown on molybdenum disulfide (a band gap material) revealed a well-defined V-shaped density of states, which is reminiscent for a 2D Dirac system. Inspired by these encouraging results we also plan to synthesize germanene on hexagonal boron nitride (h-BN) substrates. h-BN is an ideal template for germanene because of (1) its nearly perfect lattice match with germanene and (2) the relevant electronic states of germanene near the Fermi level are decoupled from the substrate due to the large h-BN band gap of ~6 eV. The structural and electronic properties of the interior, as well as the edges of germanene (synthesized on MoS2 and h-BN), will be studied with variable-temperature scanning tunneling microscopy and spectroscopy. A sizeable band gap will be opened in germanene via the application of an external electric field. The opening of the band gap allows us to alter the topological state of germanene. We hope the proposed investigation to help to understand the properties and novel quantum phenomena of germanene and provide opportunities for the next generation of low dissipation spintronics device applications.
锗烯是类似于石墨烯的单层锗结构,理论研究表明锗烯可以具有石墨烯所有的优异性质,而且锗烯因其大的自旋轨道耦合作用可以实现量子自旋霍尔效应,这为拓扑量子器件提供了可能。本项目从实验角度出发,利用扫隧道显微镜和扫描隧道谱为主要实验探测手段,探究了经过超高真空分子束外延可控合成的锗烯并探测其结构与电子学性质等得到了序列重要研究成果,主要为(1)理清楚了锗烯在MoS2生长的机制,并通过生长调控实现了锗烯在MoS2的插层生长,理清楚了锗在MoS2的生长机制。而对锗烯在金属衬底担载的单层WSe2上成功制备,并对WSe2构筑的近自由状态无衬底担载的锗烯调控,发现因对称性破缺可以在锗烯打开0.17eV的带隙。这是在实验上对半金属性锗烯带隙打开的首次报道,对在未来锗烯在电子器件上上应用奠定了基础;(2)关注半导体型TMDs与金属衬底的界面相互作用以及对二维材料电子性质的调控,发展了一种简易方法预处理金箔实现了单晶Au(100)衬底,研究了二维半导体材料MoSe2与衬底电子脱耦合的生长,证实MoSe2与衬底的弱耦合,这一发现打破了金属衬底会与外延薄膜电子态杂化的传统认识,证明通过对衬底的调控也能实现准自由的二维原子晶体的生长。此外,通过调控WSe2和Au(100)衬底的相对转角,实现WSe2掺杂状态的改变,在原子尺度构筑npn型同质结。通过本项目发表SCIE收录的学术论文8篇,已毕业硕士生1名。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Nanopore-Patterned CuSe Drives the Realization of the PbSe-CuSe Lateral Heterostructure
纳米孔图案 CuSe 推动 PbSe-CuSe 横向异质结构的实现
DOI:10.1021/acsami.2c08397
发表时间:2022
期刊:ACS Applied Materials & Interfaces
影响因子:9.5
作者:Bo Li;Jing Wang;Qilong Wu;Qiwei Tian;Ping Li;Li Zhang;Long-Jing Yin;Yuan Tian;Ping Kwan Johnny Wong;Zhihui Qin;Lijie Zhang
通讯作者:Lijie Zhang
Symmetry breaking induced band gap opening in epitaxial germanene on WSe2
WSe2 上外延锗烯的对称性破缺引起带隙打开
DOI:10.1063/5.0103367
发表时间:2022
期刊:Applied Physics Letters
影响因子:4
作者:Qilong Wu;Meysam Bagheri Tagani;Qiwei Tian;Sahar Izadi Vishkayi;Li Zhang;Long-Jing Yin;Yuan Tian;Lijie Zhang;Zhihui Qin
通讯作者:Zhihui Qin
Electronic Tuning in WSe2/Au via van der Waals Interface Twisting and Intercalation
通过范德华界面扭曲和插层对 WSe2/Au 进行电子调谐
DOI:10.1021/acsnano.2c00916
发表时间:2022
期刊:ACS Nano
影响因子:17.1
作者:Qilong Wu;Meysam Bagheri Tagani;Lijie Zhang;Jing Wang;Yu Xia;Li Zhang;Sheng-Yi Xie;Yuan Tian;Long-Jing Yin;Wen Zhang;Alex;er N. Rudenko;Andrew T. S. Wee;Ping Kwan Johnny Wong;Zhihui Qin
通讯作者:Zhihui Qin
Promoting a Weak Coupling of Monolayer MoSe(2) Grown on (100)-Faceted Au Foil.
促进在 (100) 面金箔上生长的单层 MoSe2 的弱耦合
DOI:10.1021/acsnano.0c08513
发表时间:2021
期刊:ACS Nano
影响因子:17.1
作者:Wu Qilong;Fu Xiaoshuai;Yang Ke;Wu Hongyu;Liu Li;Zhang Li;Tian Yuan;Yin Long-Jing;Huang Wei-Qing;Zhang Wen;Wong Ping Kwan Johnny;Zhang Lijie;Wee Andrew T S;Qin Zhihui
通讯作者:Qin Zhihui
DOI:10.1103/physrevb.102.205419
发表时间:2020
期刊:Physical Review B
影响因子:3.7
作者:Z. Jiao;Q. Yao;A. N. Rudenko;L. Zhang;H. J. W. Z;vliet
通讯作者:vliet
二维过渡金属硒(碲)化物半导体物性调控及转角界面耦合
  • 批准号:
    2025JJ50020
  • 项目类别:
    省市级项目
  • 资助金额:
    0.0万元
  • 批准年份:
    2025
  • 负责人:
    张利杰
  • 依托单位:
二维材料锗烯电子去耦合外延生长及其结构与电学性质研究
  • 批准号:
    2019JJ50034
  • 项目类别:
    省市级项目
  • 资助金额:
    0.0万元
  • 批准年份:
    2019
  • 负责人:
    张利杰
  • 依托单位:
二维材料锗烯的制备及其原型器件构筑
  • 批准号:
    51972106
  • 项目类别:
    面上项目
  • 资助金额:
    60.0万元
  • 批准年份:
    2019
  • 负责人:
    张利杰
  • 依托单位:
国内基金
海外基金