课题基金基金详情
近Hermite流形间Hermite调和映照的若干研究
结题报告
批准号:
12001410
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
赵广文
依托单位:
学科分类:
几何分析
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
赵广文
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
在复几何的研究中,调和映照的理论和应用起到了至关重要的作用。关于Kahler流形以及Hermite流形间各种调和映照已经有了大量的研究,取得了丰富的成果。而近Hermite流形间的调和映照的相关研究目前还很少,结果尚未成熟。本项目拟研究近Hermite流形间Hermite调和映照的相关问题。首先,我们拟研究近Hermite流形间Hermite调和映照热流的短时间存在性、长时间存在性和收敛性,从而建立Hermite调和映照的存在性。其次,我们拟研究近Hermite流形间Hermite多重调和映照与Hermite调和映照的全纯性。最后,我们拟在Bakry-Emery Ricci曲率条件下,建立近Hermite流形间Hermite调和映照的Schwarz引理。通过本项目的研究,将使我们对近Hermite流形有更加深入的认识和理解,也将进一步丰富调和映照的理论。
英文摘要
In the study of complex geometry, the theory and application of harmonic maps play an important role. Harmonic maps between Kahler manifolds and various harmonic maps from Hermitian manifolds have been widely and deeply studied by many geometers. However, there are few researches on the harmonic maps between almost Hermitian manifolds and the results are not yet mature. In this project, we intend to study the problems related to Hermitian harmonic maps between almost Hermitian manifolds. First of all, we will study the short-time existence, the long-time existence and the convergence of Hermitian harmonic maps heat flow between almost Hermitian manifolds to obtain the existence of Hermitian harmonic maps. Secondly, we will study the holomorphicity of Hermitian pluriharmonic maps and Hermitian harmonic maps between almost Hermitian manifolds. Finally, we will establish Schwarz lemmas for Hermitian harmonic maps between almost Hermitian manifolds under the Bakry-Emery Ricci curvature. Through the study of this project, we will have a better understanding of almost Hermitian manifolds. It will also further enrich the theory of harmonic maps.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1142/s0219887822501249
发表时间:2022
期刊:International Journal of Geometric Methods in Modern Physics
影响因子:--
作者:Guangwen Zhao
通讯作者:Guangwen Zhao
国内基金
海外基金