课题基金基金详情
质量和复杂度可调节的动态3D点云几何视频压缩研究
结题报告
批准号:
62001209
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
李跃
依托单位:
学科分类:
多媒体通信
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
李跃
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
动态3D点云可以重建逼真的数字三维场景,在虚拟现实等领域有广阔的应用前景。然而,动态3D点云数据由几何信息和其它属性信息构成,数据量特别巨大。动态3D点云的高效压缩是数据压缩编码领域的前沿问题,现有先进的动态3D点云压缩是以传统的视频压缩方法为基础的,没有考虑点云映射生成的几何视频与自然视频之间的显著差异。本项目以异构网络环境动态3D点云高效存储和实时传输为应用背景,结合动态3D点云几何视频的特点,研究质量和复杂度可调节的高效压缩技术和方法。首先,分析人眼视觉对动态3D点云与2D图像的关注度差异性,建立符合动态3D点云人眼视觉感兴趣区域检测模型;然后,以感兴趣区域为基础,通过优化量化参数和快速判别、提前终止等策略,构建动态3D点云几何视频压缩的质量可调节模型和复杂度可调节模型。预计研究成果可实现动态3D点云几何视频压缩资源的优化分配,满足异构网络环境的用户需求,推动沉浸式多媒体技术的发展。
英文摘要
Dynamic 3D point cloud can reconstruct vivid 3D scene, which has wide application potentials in many fields such as virtual reality. However, dynamic 3D point cloud is composed of geometry information and other attribute information, and the amount of data is extremely huge. Efficient compression of dynamic 3D point cloud is one of the most difficult problems in the field of data compression coding. Existing advanced dynamic 3D point cloud compression is based on the conventional video compression technologies, which does not consider the great differences between natural video and geometry video generated by point cloud mapping. To meet the application requirements of efficient storage and real-time transmission of dynamic 3D point cloud under heterogeneous network environment, this project researches on efficient compression with tunable quality and complexity for dynamic 3D point cloud by fulling considering its characteristics. Firstly, by analyzing the saliency differences of human visual system towards dynamic 3D point cloud and 2D image, we establish the region of interest detection model which can meet the human vision towards dynamic 3D point cloud. Secondly, based on the established region of interest detection model, tunable quality and tunable complexity models will be built for dynamic 3D point cloud geometry video compression by exploiting various strategies such as quantization parameter optimization, fast decision and early termination. It is expected that the research results can achieve the optimal resource allocation of dynamic 3D point cloud geometry video compression, meet the heterogeneous network user requirements, and promote the development of immersive multimedia technologies.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.dsp.2022.103448
发表时间:2022-02
期刊:Digit. Signal Process.
影响因子:--
作者:Yue Li;Gaobo Yang;Aiping Qu;Yapei Zhu
通讯作者:Yue Li;Gaobo Yang;Aiping Qu;Yapei Zhu
DOI:--
发表时间:2023
期刊:南华大学学报(自然科学版)
影响因子:--
作者:陈思佳;李跃;林文斌
通讯作者:林文斌
DOI:10.3390/s22207741
发表时间:2022-10-12
期刊:Sensors (Basel, Switzerland)
影响因子:--
作者:Li Y;Luo F;Zhu Y
通讯作者:Zhu Y
DOI:10.1016/j.cag.2023.10.007
发表时间:2023-10
期刊:Comput. Graph.
影响因子:--
作者:Shicheng Que;Yue Li
通讯作者:Shicheng Que;Yue Li
DOI:10.1007/s11554-023-01389-2
发表时间:2023-12
期刊:Journal of Real-Time Image Processing
影响因子:3
作者:Yue Li;Jun Huang;Chaofeng Wang;Hongyue Huang
通讯作者:Yue Li;Jun Huang;Chaofeng Wang;Hongyue Huang
低复杂度VVC关键技术研究
  • 批准号:
    2020JJ5496
  • 项目类别:
    省市级项目
  • 资助金额:
    0.0万元
  • 批准年份:
    2020
  • 负责人:
    李跃
  • 依托单位:
国内基金
海外基金