分数阶时变时滞神经网络的非脆弱事件触发伪状态估计
结题报告
批准号:
62006213
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
王凤仙
依托单位:
学科分类:
交叉学科中的人工智能问题
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
王凤仙
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
在复杂网络理论研究中,由于分数阶微积分的记忆性及遗传性,分数阶神经网络逐渐兴起并发展为该领域的研究热点。分数阶时变时滞神经网络的伪状态估计在其应用过程中具有重要的支撑作用和参考价值,是分数阶神经网络理论的一个基本问题。基于事件触发机制,本项目拟针对分数阶时变时滞神经网络的伪状态估计问题展开研究:1)构造新型分数阶Lyapunov-Krasovskii(L-K)泛函,为分数阶L-K泛函的构造提供数学思路,丰富分数阶Lyapunov稳定性理论;2)证明新型分数阶微分不等式,并用于分数阶L-K泛函的分数阶导数的估计,为分数阶系统的理论分析提供数学技巧;3)设计分数阶事件触发条件,构造Arcak型时滞相关的分数阶非脆弱伪状态观测器,获得分数阶时变时滞神经网络伪状态估计的判别条件。预期成果将丰富分数阶时变时滞神经网络的伪状态估计理论,为其在人工智能、控制工程等领域中的应用提供理论指导和科学依据。
英文摘要
Fractional order neural networks have gradually emerged and developed into a research hotspot due to fractional calculus’s memorability and heredity in the study of complex network theory. Pseudo state estimation as a basic problem has important theoretical supports to applications of fractional order neural networks with time-varying delays. Based on the event-triggered mechanism, this project will study the pseudo state estimation of fractional order time-varying delayed neural networks. 1) Some new fractional order Lyapunov-Krasovskii (L-K) functionals will be constructed to provide mathematical ideas for fractional order L-K functionals and enrich the fractional order Lyapunov’s stability theory. 2) Proving some novel fractional order differential inequalities which can be used to estimate the fractional order derivative of the fractional order L-K functionals and provide mathematical skills for the theoretical analysis of fractional order systems. 3) Fractional order event-triggering conditions and fractional order Arcak type non-fragile pseudo state observers will be designed, based on which some discriminant conditions for the pseudo state estimation of fractional order time-varying delayed neural networks will be obtained. The expected results will enrich the pseudo state estimation theory of fractional order time-varying delayed neural networks and provide theoretical guidance and scientific basis for their applications in artificial intelligence and control engineering.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.chaos.2023.113418
发表时间:2023-05
期刊:Chaos, Solitons & Fractals
影响因子:--
作者:Fengxian Wang;Jie Zhang;Yanjun Shu;Xinge Liu
通讯作者:Fengxian Wang;Jie Zhang;Yanjun Shu;Xinge Liu
DOI:10.1002/asjc.2944
发表时间:2022
期刊:Asian Journal of Control
影响因子:2.4
作者:Feng-Xian Wang;Jie Zhang;Yan-Jun Shu;Xin-Ge Liu
通讯作者:Xin-Ge Liu
DOI:10.1016/j.optlastec.2023.109334
发表时间:2023
期刊:Optics And Laser Technology
影响因子:--
作者:Jie Zhang;Fengxian Wang;Huanlong Zhang;Xiaoping Shi
通讯作者:Xiaoping Shi
DOI:10.1007/s11227-023-05427-5
发表时间:2023-06
期刊:The Journal of Supercomputing
影响因子:--
作者:Fengxian Wang;Shaozhi Feng;Youmei Pan;Huanlong Zhang;Senlin Bi;Jiaxiang Zhang
通讯作者:Fengxian Wang;Shaozhi Feng;Youmei Pan;Huanlong Zhang;Senlin Bi;Jiaxiang Zhang
DOI:10.1007/s00371-023-02842-w
发表时间:2023-03
期刊:The Visual Computer
影响因子:--
作者:J. Zhang;Qiye Qi;Fengxian Wang;Huanlong Zhang;Xiaoping Shi
通讯作者:J. Zhang;Qiye Qi;Fengxian Wang;Huanlong Zhang;Xiaoping Shi
国内基金
海外基金