基于Rotate-and-Kill技术的寻找凸区域内外极值图形的最优算法的设计
批准号:
62002394
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
金恺
依托单位:
学科分类:
计算机科学的基础理论
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
金恺
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
极值多边形问题(又称多边形近似问题)是计算几何领域的基础问题,在图像识别、运筹学等领域有许多实际应用,长期受到学者的关注和研究。申报人基于自己提出的一种名为Rotate-and-Kill的技术为三个典型的此类问题设计了线性时间算法,改进了其中一个问题现有的五个非线性算法(发表于STOC'82, Algorithmica'87, FOCS'88, DCG'94, SODA'95)且简化了另两个问题现有的线性算法(发表于JOA'86, IJCGA'92)。本质上,Rotate-and-Kill技术利用极值多边形问题局部最优解常常具有的某种单调性,给出了一种巧妙的方案从问题的一个局部最优解迅速计算下一个局部最优解,故它亦可解决许多其他同类问题。申报人计划继续发展和完善上述技术,用它解决计算几何领域更多的基础问题(含多边形近似问题的多个变种),尤其是一些长期开放的难题,从而引领本领域在未来的发展。
英文摘要
The problems of finding extremal polygons (also known as polygon approximation problems) are fundamental in computational geometry and have been studied extensively over the past years due to their enormous applications in operation research, shape recognition, and some other fields. Recently, the fund applicant proposed a so-called Rotate-and-Kill technique for solving these problems. Based on this new technique, he designs three linear-time algorithms for solving three typical polygon approximation problems. One of them improves over five non-linear algorithms that are respectively published in STOC'82, Algorithmica'87, FOCS'88, DCG'94, and SODA'95. His other two algorithms significantly simplify the existing linear algorithms published in JOA'86 and IJCGA’92. In fact, the Rotate-and-Kill technique is flexible and can be applied in many problems. It utilizes a monotonicity of the (locally-)optimal solutions which is admitted by almost all the polygon approximation problems and presents a framework for searching one optimal solution of the problem from another rapidly. Hopefully, this technique can lead to the resolution of other longstanding open problems in this filed..The fund applicant plans to mature the abovementioned technique in upcoming years. He has the ambition to solve plenty more polygon approximation problems, as well as other related problems in computational geometry, based on this technique, and thus lead the development of this field in the future.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:https://www.sciencedirect.com/science/article/pii/S0045790622007364
发表时间:2022
期刊:Computers and Electrical Engineering
影响因子:--
作者:Kai Jin;Danna Zhang;Canhui Zhang
通讯作者:Canhui Zhang
DOI:https://dl.acm.org/doi/10.1145/3531227
发表时间:2022
期刊:ACM Transactions on Algorithms
影响因子:1.3
作者:Kai Jin;Siu-Wing Cheng;Man-Kwun Chiu;Man Ting Wong
通讯作者:Man Ting Wong
DOI:10.3390/math10244703
发表时间:2022
期刊:Mathematics
影响因子:2.4
作者:Kai Jin;Taikun Zhu;Zhaoquan Gu;Xiaoming Sun
通讯作者:Xiaoming Sun
国内基金
海外基金















{{item.name}}会员


