Dirichlet定理及其延伸的可改进性理论的研究

批准号:
12001190
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
黄玲玲
依托单位:
学科分类:
几何测度论与分形
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
黄玲玲
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
丢番图逼近研究实数被有理数逼近的精度问题,实质就是研究有理数的分布性质。Dirichlet定理是关于有理数分布性质的最根本的结果,是度量丢番图逼近理论的起点。关于Dirichlet定理的可改进性的研究是目前数论、分形理论等领域专家关注的热点问题之一。.本项目拟展开对Dirichlet定理及其延伸的可改进性理论的研究。具体的,我们将研究Dirichlet可改进集的分形性质;研究连分数中连续部分商乘积的渐进行为;研究非齐次的Dirichlet定理的可改进性问题。本项目旨在发展一致丢番图逼近理论以及完善连分数中部分商乘积的维数理论。
英文摘要
Diophantine approximation studies the accuracy of a real number approximated by rationals, which is in essence to study the distribution properties of rational numbers. Dirichlet's theorem is the most fundamental result about the distribution properties of rationals and the starting point in metric theory of Diophantine approximation. The study on the improvability of Dirichlet's theorem is one of the hot issues in the field of number theory, fractal theory, etc..This project intends to initiate a study on the improvable theory of Dirichlet's theorem and its extension. More precisely, we will study the fractal properties of Dirichlet improvable sets, study the asymptotic behavior of the product of consecutive partial quotients in continued fractions,study the improvability of inhomogeneous Dirichlet's theorem. This project aims at developing uniformly Diophantine approximation theory and improving the dimension theory of the product of partial quotients in continued fractions.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
A DIMENSIONAL RESULT ON THE PRODUCT OF CONSECUTIVE PARTIAL QUOTIENTS IN CONTINUED FRACTIONS
连分数中的连分式商积的量纲结果
DOI:10.1017/s1446788721000173
发表时间:2021-10
期刊:J. Aust. Math. Soc.
影响因子:--
作者:Lingling Huag;Chao Ma
通讯作者:Chao Ma
国内基金
海外基金
