Heisenberg群上p-Poisson型方程的非线性Calderón-Zygmund正则性与点态位势估计

批准号:
12001333
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
周峰
依托单位:
学科分类:
调和分析与逼近论
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
周峰
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
含有p-Laplace算子的散度型次椭圆方程在数学与物理领域有着深刻的背景与广泛的应用,在Heisenberg群上研究其弱解的正则性具有重要的探索意义和理论价值。本项目拟考虑Heisenberg群上具有不连续系数的p-Poisson型方程,研究弱解的非线性Calderón-Zygmund正则性与点态位势估计。本项目拟借助Sharp极大算子与函数空间的刻画等调和分析的工具,采用统一的方法得到弱解水平梯度在Lebesgue、Lorentz、Orlicz、BMO、Hölder、Campanato、Besov与Triebel-Lizorkin等空间中的正则性;借助于非线性Havin-Maz’ya-Wolff位势,拟建立弱解与其水平梯度的点态位势估计。本项目旨在丰富和推广Heisenberg群上的非线性Calderón-Zygmund正则性与点态位势理论的研究,促进调和分析与偏微分方程的发展。
英文摘要
The nonlinear sub-elliptic partial differential equations involving the p-Laplacian in divergence form have a profound background and extensive applications in the fields of Mathematics and Physics. The study on regularity estimates for weak solutions to the relative equations on the Heisenberg groups is of great theoretical value and realistic significance. This project will focus on some applications of Harmonic Analysis in the field of Partial Differential Equations. We will deal with the nonlinear Calderón-Zygmund regularities and pointwise potential estimates for weak solutions with their horizontal gradients to the p-Poisson type equations with discontinuous coefficients on the Heisenberg groups. By using the Fefferman-Stein sharp maximal operator and characterization of function spaces in Harmonic Analysis, we are expected to adopt a unified approach to establish global regularities in various spaces, such as Lebesgue space, Lorentz space, Orlicz space, BMO space, Hölder space, Campanato space, Besov space and Triebel-Lizorkin space. By using the Havin-Maz’ya-Wolff potential, we will establish pointwise potential estimates for weak solutions as well as their horizontal gradients. It will be expected to enrich and extend the nonlinear Calderón-Zygmund regularity theory and pointwise potential theory for the p-Poisson type equations on the Heisenberg groups, promote the developments of Harmonic Analysis and Partial Differential Equations on the Heisenberg groups, and gain some meaningful achievements.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1007/s00009-022-02135-x
发表时间:2021-08
期刊:Mediterranean Journal of Mathematics
影响因子:1.1
作者:Lingwei Ma;Zhenqiu Zhang;F. Zhou
通讯作者:Lingwei Ma;Zhenqiu Zhang;F. Zhou
DOI:DOI:10.12074/T202402.00284V1
发表时间:2024
期刊:ChinaXiv
影响因子:--
作者:Huimin Cheng;Feng Zhou
通讯作者:Feng Zhou
DOI:https://doi.org/10.48550/arXiv.2402.12975
发表时间:2024
期刊:arxiv
影响因子:--
作者:Huimin Cheng;Feng Zhou
通讯作者:Feng Zhou
国内基金
海外基金
