混合式巡线机器人自主巡检关键技术研究
结题报告
批准号:
61973300
项目类别:
面上项目
资助金额:
60.0 万元
负责人:
杨国栋
学科分类:
机器人学与智能系统
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
杨国栋
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
结合飞行、爬行两种运动模式的混合式架空输电线路巡检机器人相比于传统的攀爬式机器人和无人机在巡检精度、灵活性和稳定性上都有明显优势,但是机器人自主性不足限制了其推广应用。本项目拟结合机器人学、机器视觉、机器学习等学科理论和方法,针对混合式机器人自主巡检面临的环境识别、定位和运动规划等关键问题开展深入研究。首先基于激光雷达和视觉信息,进行输电走廊典型特征的识别研究,获取输电线、杆塔等典型对象信息;其次结合已知点云地图,通过子采样地图与图像特征匹配,实现巡线机器人的实时定位;然后基于生成对抗网络和模仿学习策略,进行巡检障碍感知和机器人运动规划研究,实现输电走廊动态时变环境下的全线路巡检最优路径规划;最后将上述成果应用于现有机器人平台,验证其有效性。通过本项目的实施,突破制约架空线自主巡检的关键技术瓶颈,为混合式巡检机器人的实用化和电网的智能化奠定基础。
英文摘要
Compared with the traditional climbing robot and UAV, the hybrid-mode inspection robot for overhead transmission line has obvious advantages over the inspection precision, flexibility and stability, but the lack of autonomy of the robot restricts its popularization and application. This project is based on the theory and methods of robotics, machine vision, machine learning and other disciplines, aiming at the key problems such as the environment identification, location and motion planning of autonomous inspection with the hybrid-mode robot . First, based on LiDAR and visual information, the identification of typical features of transmission corridors is carried out, and the typical object information of transmission lines and towers is obtained. Secondly, combining with the known point cloud Map, the real-time location of the inspection robot can be realized by matching the point cloud sub-sampling map and the image feature. Then based on the generation adversarial network and imitation learning strategy, the study of obstacle perception and robot motion planning is carried out to realize the.optimal path planning in the dynamic time-varying environment of transmission corridor. Finally the results are applied to the existing robot platform to verify their validity. Through the implementation of this project, the key technical bottleneck restricting the independent inspection of overhead lines can be broken, which lays the foundation for the practicality of the hybrid-mode inspection robot and the intelligence of the power grid.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Efficient Parallel Branch Network With Multi-Scale Feature Fusion for Real-Time Overhead Power Line Segmentation
具有多尺度特征融合的高效并行分支网络,用于实时架空电力线分段
DOI:10.1109/jsen.2021.3062660
发表时间:2021-05-15
期刊:IEEE SENSORS JOURNAL
影响因子:4.3
作者:Gao, Zishu;Yang, Guodong;Guo, Rui
通讯作者:Guo, Rui
DOI:10.1109/LRA.2024.3363535
发表时间:2024
期刊:IEEE Robotics and Automation Letters
影响因子:5.2
作者:Zhishuo Li;Yunong Tian;Guodong Yang;Yanfeng Zhang;En Li;Zize Liang;Min Tan
通讯作者:Min Tan
Novel Feature Fusion Module-Based Detector for Small Insulator Defect Detection
用于小型绝缘子缺陷检测的基于新颖功能融合模块的探测器
DOI:10.1109/jsen.2021.3073422
发表时间:2021-08-01
期刊:IEEE SENSORS JOURNAL
影响因子:4.3
作者:Gao, Zishu;Yang, Guodong;Liang, Zize
通讯作者:Liang, Zize
DOI:10.3390/s22093258
发表时间:2022-04-24
期刊:Sensors (Basel, Switzerland)
影响因子:--
作者:
通讯作者:
DOI:10.1109/tim.2022.3224524
发表时间:2023
期刊:IEEE Transactions on Instrumentation and Measurement
影响因子:5.6
作者:Zhishuo Li;Yunong Tian;Guodong Yang;E. Li;Yanfeng Zhang;Minghao Chen;Zi-ze Liang;Min Tan
通讯作者:Zhishuo Li;Yunong Tian;Guodong Yang;E. Li;Yanfeng Zhang;Minghao Chen;Zi-ze Liang;Min Tan
巡线机器人动态时变环境下的特征识别与路径规划研究
  • 批准号:
    61403374
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    24.0万元
  • 批准年份:
    2014
  • 负责人:
    杨国栋
  • 依托单位:
国内基金
海外基金