定量几乎可约性在算子谱理论和Sarnak猜测中的应用

批准号:
11971233
项目类别:
面上项目
资助金额:
52.0 万元
负责人:
王婧
依托单位:
学科分类:
动力系统与遍历论
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
王婧
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
本项目主要研究刘维尔频率的拟周期薛定谔算子的谱理论及Sarnak猜测。拟周期薛定谔算子与量子霍尔效应等现象相关,获得了数学家和物理学家的广泛关注,用动力系统的方法研究它的谱是近期研究热点。由于小分母问题,现有结果主要集中在特殊算子或丢番图频率的拟周期薛定谔算子中。我们拟对刘维尔频率的拟周期薛定谔算子谱进行研究,利用定量几乎可约性理论证明稠密刘维尔频率的薛定谔算子态密度的Hölder连续性及谱的齐次性,并构造超刘维尔频率,证明此时算子有绝对连续谱。Sarnak猜测由于与素数定理的联系也吸引了一批著名学者如沃尔夫奖、菲尔兹奖得主等参与研究。该猜测在一些具体零熵系统中被证明,但主要集中在正则系统或一维频率可交换系统中。我们拟创新性的用定量几乎可约研究不可交换的非正则系统——拟周期薛定谔cocycle投影流的Möbius正交性,并构造高维刘维尔频率使得一类可交换的拟周期斜积流是Möbius正交的。
英文摘要
This project aims to study the spectral theory of quasi-periodic Schrödinger operator with Liouvillean frequency and Sarnak’s conjecture. Quasi-periodic Schrödinger operator is related to the phenomena in physics such as quantum Hall effect, and it attains a lot of attentions from mathematicians and physicians. Using the methods in dynamical systems to study the spectrum of quasi-periodic Schrödinger operators is a hotspot of recent research. However, due to the small divisor problem, the known results are mainly on special operators or operators with Diophantine frequencies. We are planning to study the spectrum of quasi-periodic Schrödinger operators with Liouvillean frequencies. Applying quantitative almost reducibility theory, we want to prove there exist dense Liouvillean frequencies that the integrated density of states of the corresponding quasi-periodic Schrödinger operator is Hölder continuous and the spectrum of the operator is homogeneous. Moreover, we want to construct a kind of super-Liouvillean frequencies such that the Schrödinger operator has absolutely continuous spectrum. Sarnak’s conjecture has a close relationship with prime number theory, and many outstanding scholars including some Wolf and Fields medal prize winners are involved in this subject. This conjecture has been proved in some specific dynamical systems with zero topological entropy. However, these systems are mainly regular or commutative. We innovatively using quantitative almost reducibility to study the Möbius disjointness for the projective action of quasi-periodic Schrödinger cocycles, which are noncommutative and irregular. Moreover, we want to construct some high-dimensional Liouvillean frequencies such that a special kind of commutative quasi-periodic skew-product flow is also Möbius disjoint.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1007/s42543-023-00081-5
发表时间:2021-11
期刊:Peking Mathematical Journal
影响因子:--
作者:Wen-ling Huang;Jing Wang;Zhiren Wang;Qi Zhou
通讯作者:Wen-ling Huang;Jing Wang;Zhiren Wang;Qi Zhou
DOI:10.1016/j.jde.2023.01.034
发表时间:2023-05
期刊:Journal of Differential Equations
影响因子:2.4
作者:Jing Wang;Huijuan Wei;Xindong Xu
通讯作者:Jing Wang;Huijuan Wei;Xindong Xu
DOI:10.16205/j.cnki.cama.2023.0019
发表时间:2023
期刊:数学年刊. A辑
影响因子:--
作者:魏慧娟;单远;王婧
通讯作者:王婧
DOI:https://doi.org/10.1016/j.jfa.2020.108632
发表时间:2020
期刊:Journal of Functional Analysis
影响因子:--
作者:Xuanji Hou;Jing Wang;Qi Zhou
通讯作者:Qi Zhou
KAM理论在刘维尔频率的拟周期系统中的应用
- 批准号:11601230
- 项目类别:青年科学基金项目
- 资助金额:19.0万元
- 批准年份:2016
- 负责人:王婧
- 依托单位:
国内基金
海外基金
