Kahler几何与辛拓扑中若干问题的研究
结题报告
批准号:
11371345
项目类别:
面上项目
资助金额:
50.0 万元
负责人:
阮卫东
学科分类:
A0107.代数几何与复几何
结题年份:
2017
批准年份:
2013
项目状态:
已结题
项目参与者:
苏耀峰
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
本研究课题的主题是Kahler几何和辛拓扑方面的若干问题。 更具体的内容主要是在两个方面进行深入研究。一方面是Calabi-Yau及Kahler-Einstein流形的几何性质,包括复结构退化时度量的收敛性,以及Calabi-Yau度量与(special) Lagrangian纤维化的关系;另一方面研究如何理解辛流形上的Fukaya 范畴以及有关的辛拓扑结构, 如何有效地计算辛拓扑不变量。这些方面的结果除了在Kahler几何和辛拓扑方面的意义之外,也会促进对镜像对称的深入理解。
英文摘要
The main objective of this research proposal is to study several problems in Kahler geometry and symplectic topology that originated from understanding mirror symmetry. More concretely, we will do research on the following two aspects. First, we will study the geometric properties of Kahler-Einstein and Calabi-Yau manifolds, including studying the convergence of these canonical metrics as complex structures degenerate, and how Calabi-Yau metrics are related to Lagrangian and special Lagrangian fibration structures of Calabi-Yau manifolds. Second, we plan to study how to understand and effectively compute Fukaya category and other symplectic invariants. Results from research on these problems will not only be of interest in their field, but also further our understanding of the phenomena and mechanism of mirror symmetry.
本课题的主题是Kahler几何与辛几何方面若干课题的研究。具体的问题包括研究Kahler流形,特别是Calabi-Yau流形的度量的收敛,构造和计算辛拓扑不变量, 并研究这些不变量在镜对称中的应用。我们在这些方面取得了一定的进展, 还进行了通过Yang-Yang函数计算扭结不变量的研究。本课题除了在几何和拓扑方面的学术意义外, 也促进了博士后、研究生及本科生的培养和教育。
专著列表
科研奖励列表
会议论文列表
专利列表
国内基金
海外基金