面向互联网大数据的用户兴趣挖掘及预测研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    61772445
  • 项目类别:
    面上项目
  • 资助金额:
    15.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    F0211.信息检索与社会计算
  • 结题年份:
    2018
  • 批准年份:
    2017
  • 项目状态:
    已结题
  • 起止时间:
    2018-01-01 至2018-12-31

项目摘要

Nowadays, the applications in the Internet have accumulated huge and rich data, including the attributes of users and items, the social links between users, and the interactions between users and items. For example, users would like to read news, buy products, or check in tourism attractions, and then write comments to share their experiences. This project aims to exploit these data to mine and predict the interests of users to items, which can bring benefits to business, advertising, and the public. This project will study the following contents. 1) We will propose a new topic-sentiment model based on the dependencies on communities, regions, time, and the types of interactions in order to mine the fine-grained interests of users on items. 2) We will develop a new hybrid rating prediction model by combining matrix factorization and kernel-based nonlinear regression in order to predict the overall rating of users on items. 3) We will build the correlation between the topic-sentiment model and the hybrid rating prediction model. That is, the topic-sentiment model is used to estimate the historical user-item rating matrix from textual comments which is input into the hybrid rating prediction model. Thus, we can solve the problem on the lack of historical user-item rating matrices in the applications of the Internet and make the hybrid rating prediction model more useable. 4) We will evaluate the effectiveness of the proposed models using the real data from the Internet and user studies. The techniques on mining and predicting user interests can be applied in recommender systems so as to boost business profits and enrich people's quality of life.
互联网应用积累了海量的丰富数据,包括人的属性、物的属性、人与人的社交关系、人对物的互动关系。例如,用户浏览新闻、购买商品、签到旅游景点等,并且通过文本评论分享自己的经历。本项目拟利用这些数据,挖掘和预测用户的兴趣,这具有重要的商业、广告和人文价值。本项目将研究以下内容:1)建立基于社区、地区、时间和互动类型的主题情感模型,以挖掘用户对事物的细粒度兴趣。2)通过融合矩阵分解和基于核函数的多属性非线性回归,提出新的混合评分模型,以预测用户对事物的总体评分。3)建立主题情感挖掘模型和混合评分预测模型的联系,即通过主题情感模型估计历史用户-事物评分矩阵,作为混合评分预测模型的输入,以解决互联网应用中历史评分矩阵缺乏问题,从而提高混合评分预测模型的可用性。4)利用互联网大数据和用户实验数据,评价本项目提出的模型的效果。本项目开发的用户兴趣挖掘及预测技术,可应用于推荐系统,为大众和商家带来便利和利益。

结项摘要

互联网应用积累了海量的丰富数据,包括人的属性、物的属性、人与人的社交关系、人对物的互动关系。本项目利用这些数据,挖掘和预测用户的兴趣。本项目主要研究内容包括:(1)基于社区、地区、时间、互动类型的影响,提出了相应的情感偏好模型,从而更好挖掘用户对事物的兴趣。(2)评价和测试了情感偏好模型在真实数据中的表现。本项目的重要结果包括:(a)通过建模社区、地区、时间、互动类型对用户的情感偏好的影响,并且提出多标准决策方法,建模各因素在不同情况下的影响力,进而更好确定用户对事物的最终偏好程度。(b)基于深度学习技术,挖掘用户评论中语义信息,以及用户偏好随着时间迁移的变化规律,从而增强本项目用户偏好模型的准确性。(c)利用多个真实互联网大数据集,评价提出的情感偏好模型,实验结果验证了:与现有前沿技术相比,本项目模型的优越性。进一步,本项目偏好模型已经应用于商业推荐系统中。基于以上研究成果,本项目发表国际期刊SCI论文6篇。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

哺乳动物卵巢储备形成中的DNA损伤修复
  • DOI:
    --
  • 发表时间:
    2021
  • 期刊:
    国际生殖健康/计划生育杂志
  • 影响因子:
    --
  • 作者:
    周志贤;朱芳;殷缓;苏叶;蔡海奕;符淳
  • 通讯作者:
    符淳

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码