微型直接甲醇燃料电池全域自耦合传质机制构筑

批准号:
62004051
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
曹伽牧
依托单位:
学科分类:
微纳机电器件与控制系统
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
曹伽牧
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
随着军用微系统多功能融合趋势日益凸显、应用场景快速拓展,针对微型供能器件高效稳定的能源保障需求非常迫切,微型直接甲醇燃料电池(μDMFC)能量密度高、补能高效、可低温启动、结构紧凑、能量载体易储存,在此方面应用潜力巨大。然而,其实际性能与理论值差距巨大,微尺度自扩散传质机制造成的阴极气液传质受阻、质子传导受阻、甲醇渗透传质问题无法回避。本项目从微尺度水传质科学问题切入,揭示电池固体组件对多物质传质的影响机理,确立各组件物理参数与矢量传质系数的定量关系,提出以单物质传质解决多物质传质的研究方法,构筑微尺度水传质主导的全域自耦合定量传质机制,同时解决制约电池性能的三个问题,颠覆传统传质机制,研制出体积≤0.1立方厘米的微型供能器件,大幅提升能量密度、转换效率趋近理论上界,全面涵盖理论研究、科学实验和工程设计。项目实施将为军用微系统增强续航能力、提高补能效率和拓展应用场景奠定理论和实践基础。
英文摘要
With the increasingly prominent trend of multifunctional integration of military micro-systems and the rapid expansion of application scenarios, the demand for efficient and stable energy support for micro-power supply devices is very urgent. The micro direct methanol fuel cell (μDMFC) with the advantages of high energy density, high energy supplementation, low starting temperature, compact structure, and easily stored energy carriers has great potential for application in military micro-systems. However, the actual power density and energy conversion efficiency of μDMFC differ greatly from the theoretical value. Under the micro-scale self-diffusion mass transfer mechanism, the blockages of cathode gas-liquid mass transfer and proton conduction, and the methanol permeation are inevitable. This project will start with a scientific problem of water mass transfer at the micro-scale. The mechanism of the effect of solid components of μDMFC on mass transfer of multiple substances is revealed. A quantitative relation between the physical parameters of each component and vector mass transfer coefficient is established. The method of solving mass transfer issues of muti-substance by single-substance is proposed. Building a global self-coupling quantitative mass transfer mechanism dominated by water mass transfer at the micro-scale. The purpose is to solve three problems that restrict fuel cell performance simultaneously. This project will subvert the traditional mass transfer mechanism and develop a μDMFC with a volume of less than or equal to 0.1 cubic centimeters, which will significantly increase the power density and energy conversion efficiency. Make them approach the theoretical upper bound. The implementation of this project will lay a theoretical foundation and practical basis for the military micro-system to enhance endurance, improve energy replenishment efficiency, and expand application scenarios.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3390/membranes11110826
发表时间:2021-10-27
期刊:Membranes
影响因子:4.2
作者:Chen J;Cao J;Zhang R;Zhou J;Wang S;Liu X;Zhang T;Tao X;Zhang Y
通讯作者:Zhang Y
DOI:10.1016/j.cplett.2021.139231
发表时间:2021-11
期刊:Chemical Physics Letters
影响因子:2.8
作者:Jing Zhou;Junyu Chen;Shuxuan Chen;Yu Wu;Jiamu Cao;Yufeng Zhang
通讯作者:Jing Zhou;Junyu Chen;Shuxuan Chen;Yu Wu;Jiamu Cao;Yufeng Zhang
DOI:10.1016/j.chemphys.2023.111908
发表时间:2023-03
期刊:Chemical Physics
影响因子:2.3
作者:Shimin Wang;Jiamu Cao;Yu Zhao;Xu Liu;Yiming Guo;Junyu Chen;Weiqi Wang;Rongji Zhang;Yufeng Zhang;Xiaowei Liu;Q. Fu
通讯作者:Shimin Wang;Jiamu Cao;Yu Zhao;Xu Liu;Yiming Guo;Junyu Chen;Weiqi Wang;Rongji Zhang;Yufeng Zhang;Xiaowei Liu;Q. Fu
DOI:10.1016/j.energy.2023.127276
发表时间:2023-04-05
期刊:ENERGY
影响因子:9
作者:Zhang,Rongji;Cao,Jiamu;Zhang,Yufeng
通讯作者:Zhang,Yufeng
DOI:10.1021/acsanm.3c03221
发表时间:2023-09
期刊:ACS Applied Nano Materials
影响因子:5.9
作者:Weiqi Wang;Jiamu Cao;Rongji Zhang;Huaxin Xiu;Yufeng Zhang
通讯作者:Weiqi Wang;Jiamu Cao;Rongji Zhang;Huaxin Xiu;Yufeng Zhang
国内基金
海外基金
