阿尔泰山区小流域积雪积累和消融过程模拟
结题报告
批准号:
42001060
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
高黎明
依托单位:
学科分类:
冰冻圈科学
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
高黎明
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
准确的积雪模拟对水资源开发、气候变化及地质灾害预报都具有重要的指导意义。然而在高山区,风力引起的动力损失造成固态降水量观测值存在较大的误差,导致积雪模型气象驱动数据本身存在不确定性。此外,风吹雪是影响积雪在地表再分配的关键因素,虽然一些学者开发出了基于物理过程的风吹雪模型,但这些模型的普适性并没有得到验证且与大部分积雪模型并未实现耦合。基于此,本项目拟选取有较好观测和研究基础的新疆阿尔泰山区喀依尔特斯河流域,通过开展降水空间加密观测和降水对比试验,获取更为准确的降水驱动数据。结合流域布设的风吹雪观测场记录的数据,对风吹雪模型的模拟效果进行验证和改进。通过对积雪模型和风吹雪模型进行耦合,给出流域尺度上更为精确的积雪积累和消融过程的模拟结果。
英文摘要
The accurate simulation of snow accumulation and ablation processes is of great significance to water resources development, climate change and geological disaster prediction. However, in the high mountain area, the wind-induced undercatch causes large errors in the observed value of solid precipitation, which leads to the uncertainty of the meteorological driving data of the snow cover model. In addition, blowing snow is a key factor affecting snow redistribution. Although some scholars have developed blowing snow models based on physical processes, the universality of these models has not been verified and they are not coupled with most snow models. Based on this, the project intends to select the Kayiertesi river basin in the Altai Mountains of Xinjiang, which has a good basis of observation and research, to obtain more accurate precipitation driving data by carrying out intensive observation and precipitation comparison test. Combined with the data recorded by the blowing snow observation field in the basin, the simulation results of the blowing snow model are verified and improved. Through the coupling of snow model and blowing snow model, more accurate simulation results of snow accumulation and ablation process at the basin scale will be given.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1155/2021/7378196
发表时间:2021-09
期刊:Advances in Meteorology
影响因子:2.9
作者:Lele Zhang;Liming Gao
通讯作者:Lele Zhang;Liming Gao
DOI:10.3390/atmos14101542
发表时间:2023-10
期刊:Atmosphere
影响因子:2.9
作者:Limimg Gao;Yaonan Zhang;Lele Zhang
通讯作者:Limimg Gao;Yaonan Zhang;Lele Zhang
DOI:10.1016/j.ejrh.2022.101186
发表时间:2022-10
期刊:Journal of Hydrology: Regional Studies
影响因子:--
作者:Le-le Zhang;Liming Gao;Ji Chen;Lin Zhao;Jing-yi Zhao;Y. Qiao;Jianzong Shi
通讯作者:Le-le Zhang;Liming Gao;Ji Chen;Lin Zhao;Jing-yi Zhao;Y. Qiao;Jianzong Shi
DOI:--
发表时间:2022
期刊:干旱区研究
影响因子:--
作者:李炎坤;高黎明;张乐乐;吴雪晴;刘轩辰;祁闻
通讯作者:祁闻
DOI:10.1007/s11629-021-6839-7
发表时间:2022-07
期刊:Journal of Mountain Science
影响因子:2.5
作者:Le-le Zhang;Liming Gao;Ji Chen;Lin Zhao;Ke Chen;Jing-yi Zhao;Guojun Liu;Ting Song;Yan-kun Li
通讯作者:Le-le Zhang;Liming Gao;Ji Chen;Lin Zhao;Ke Chen;Jing-yi Zhao;Guojun Liu;Ting Song;Yan-kun Li
国内基金
海外基金